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the prediction falls in the range of the estimated experi-
mental data with Fx/F = 1.05 to 1.20.

As a result of these considerations, the following
remarks may be made:

(a) From Fig. 3 we can safely exclude 8(—1, though
we cannot exclude 8)0 for large Frr/F

(b) From Fig. 1 we conclude that 8„&—0.21. If
the co-y mixing eGect does not "break" the param-
eters badly, we may well exclude the possibility of
ep~8) 0.

The conclusions (a) and (b) confirm the result ob-
tained by Schnitzer and steinberg. ' '

(c) Figures 1-4 show that the value of Fx/F can-
not be larger than 1.25 without badly spoiling one of the
predictions for F„~+.17, F~~ ~+,or I'~„~+p. The most
likely value of Fx/F seems to be in the range 1.10-1.15.

A more conclusive test of the validity of the extension
of Schnitzer and Weinberg's approach to the SU(3)
XSU(3) algebra will require an accurate determination
of the ratio Frr/F.

Pote added srs proof. After this paper was submitted,
the authors acknowledged an unpublished report by S.
Fenster and F. Hussain which is closely related to this
work. "
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The kinematic singularities of two-body helicity amplitudes at thresholds and the concomitant relations
among these amplitudes are discussed in a direct and elementary way, without recourse to the singularity
structure of the crossing matrix. The tools are those of nonrelativistic quantum mechanics, as befits a
situation where p~ 0, with spins combined into channel spins S and Russell-Saunders coup]. ing pf
I,+S=J. The kinematic singularities are shown to follow from a mismatch between J and L for each term
in the partial-wave series. The method is applicable at pseudothresholds (m& —m2)' as well as normal
thresholds (m&+m&)' with two formal changes involving an intrinsic parity and a helicity-dependent phase.
The relations among the different helicity amplitudes at the thresholds are shown to result from the presence
at threshold of fewer Russell-Saunders amplitudes than there are independent helicity amplitudes. The use
of invariant amplitudes is shown to be an alternative which automatically yields the kinematic singularities
and also the threshold relations among the helicity amplitudes. A discussion is given of dynamical exceptions
tp the threshold constraints, resulting from less singular than standard behavior at a threshold. The threshold
relations are important constraints on the amplitudes, and must be satisfied by any realistic model. In the
use of t-channel amplitudes for peripheral processes in the s channel, the explicit imposition of all the relatipns
at the t-channel thresholds is necessary in order to assure a differential cross section without spurious,
polelike singularities in t whose variation could in some circumstances completely control the t dependence.
The reactions 7rN —+ EI and xN ~ m'6 are used as illustrations. The latter process is especially illuminating
because its t-channel amplitudes have a pole (rather than a simple inverse-square-root singularity) at the
Ã6 psendothreshold, t =0.09 iGeV/ol'. The proximity of this point to the physical region of the s channel
means that the threshold relations there are of crucial importance. The consequences of these constraints
on the cross-section and decay density matrix of the 6 are discussed within the framework of the Regge-pple
model. Comparison with experiment implies that the dynamics make the amplitudes for 7fm'~ 3fp have
less than the standard kinematic singularity at Eb, pseudothreshold and so avoid almost all the threshpld
constraints. Examples are cited from the literature where use of Regge-pole formulas possessing the spuripus
kinematic factors has led to incorrect inferences concerning the dynamic behavior of Regge residues.

I. INTRODUCTION

'HE question of kinematic singularities of 5-matrix
elements, that is, singularities associated with

the threshold values of s, t, and I, and so depending on

~ Supported in part by the U. S. Atomic Energy Commission

the external masses, has received considerable attention
in the past few years. Historically, the use of invariant

and by the United States Once of Naval Research under Contract
Np. NQNR 1834(05).
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Oregon, Eugene, Ore.
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amplitudes in combination with expl. icit kinematic
factors made up from the momenta and the spin or
Dirac operators automatically took into account the
kinematic singularities of the problem. Classic examples
are the A and 8 amplitudes in pion-nucleon scattering
and the four invariant amplitudes Ay, , A4 in pion
photoproduction. ' The existence and construction of
invariant amplitudes free of kinematic singularities for
a general process has been discussed by Hepp, ' Williams, '
and more recently by Fox.4 But with the consideration
of processes involving particles of arbitrary spin, the
use of helicity amplitudes' became prevalent, chief
because (a) the formalism is completely general, (b)
the angular momentum and parity expansions are
straightforward. , and f'nally (c) the helicity amplitudes
satisfy elegant crossing relations. ' The work of Hara'
andWang' solved, apart from a few details, the problem
of determining the kinematic singularities of helicity
amplitudes. Wang made extensive use of the crossing
matrix, while Hara used partial-wave threshold behavior
and the crossing matrix. Since then, other discussions
of the kinematic-singularity structure of helicity ampli-
tudes have been given from other points of view.""

In peripheral reactions, the t-channel amplitudes
often possess k.inematic singularities that are sometimes
close to the physical region of large s and, small (nega-
tive) 1. For example, in the process ab-+ cd, illustrated
in Fig. 1, the t-channel helicity amplitudes may have
inverse-square-root (or worse) singularities at one or
more of the points t = (m,+m, )', (ass+

@zan)s
and

1=(tm nz, )', (ms—ass)', —the normal thresholds and.

pseudothresholds, respectively. The pseudothresholds
can lie considerably closer to the physical s-channel
region than dynamic singularities, such as t-channel
poles. Consequently, it seems important to take proper
account of such kinematic singularities in a theoretical
model that is to be confronted with experiment. An
attempt was made for the Regge-pole model to do this
by exhibiting in the s-channel cross section all the
t-channel kinematic singularities, leaving supposedly
smoothly varying residue functions for phenomeno-
logical fitting. "This compendium of formulas for many
diferent reactions was then to be viewed as the ultimate
in Regge-pole phenomenology. Some analysis of data
on the basis of these formulas has already been done. "'

' G. F. Chew, M. L. Goldberger, P. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).' K. Hepp, Helv. Phys. Acta 37, 55 (1964).

~ D. N. Williams, Lawrence Radiation Laboratory Report No.
UCRL-11113, 1963 (unpublished).

G. C. Fox, Phys. Rev. 157, 1493 (1967).
~ M. Jacob and G. C. Wick, Ann. Phys. (N.Y.) 7, 404 (1959).
6T. L. Trueman and G. C. Wick, Ann. Phys. (N.Y.}26, 322

(1964).
~ I.J.Muzinich, J. Math. Phys. 6, 1481 (1964).

Y. Hara, Phys. Rev. 136, 3507 (1964).
L.-L. Chau Wang, Phys. Rev. 142, 1187 (1965).' G. Cohen-Tannoudji, A. Morel, and H. Navelet, Ann. Phys.

(N. Y.) 46, 239 (1968).
H. P. Stapp, Phys. Rev. 160, 1251 (1967).

~2 L. L. Wang, Phys. Rev. 153, 1664 (1967).
~3 M. Krammer and U. Maor, Nuovo Cimento SOA, 963 {1967}.
~4 S. Frautschi and L. Jones, Phys. Rev. 164, 1918 (1967).

PIG. 1. Diagram for the
process a+5 ~ c+d.

But the structure of the formulas of Ref. $2 has been
questioned, with special reference to the point t=0
by Lin" and on general grounds by Stack."

Another aspect of this general problem, recognized
during the past year, is the existence of relationships
between various helicity amplitudes at the kinematic
thresholds. These threshold cordi

throes

or kinematic
corlstraitsts are discussed by Jones" in terms of partial-
wave expansions and orbital angular momentum for the
normal thresholds, by Diu and LeBellac" in terms of
the connection between invariant and helicity ampli-
tudes, with special emphasis on t=0, and also by
Cohen-Tannoudji, Morel and Navelet, " and Fox." In
Regge-pole theory with two particles of equal mass
(e.g. , EK +~p), the—appropriate pseudothreshold
moves to t=0. There the problem of kinematic con-
straints is solved by "conspiracy" or "evasion, ""
depending on whether or not a given trajectory needs
the assistance of another trajectory in order to satisfy
the conditions in a nontrivial fashion.

The main purposes of the present paper are (I) to
present a unided and straightforward treatment of
the kinematic singularities and threshold conditions for
helicity amplitudes using orbital angular momentum,
and (2) to show within the framework. of the Regge-
pole model how to incorporate properly the kinematic
structure into the cross sections and density matrices.
We show that the general results of Refs. 9 and 10 are
obtainable by considerations of the thresholds alone,
without reference to the crossing matrix. Our use of
orbital angular momentum parallels the original work
of Hara, ' but we are careful to distinguish between
normal thresholds and pseudothresholds. Frautschi and
Jones'4 have also used orbital angular momentum
arguments to verify and interpret the singularity struc-
ture in a number of specific examples.

The end results of the proper incorporation of the
kinematic structure into the cross section and density
matrices are phenomenological formulas very di6erent
from those of Wang" in that they conform to the
requirements of Lin" and Stack" and possess no
t-channel kinematic-singularity factors. The somewhat

» K. Y. Lin, Phys. Rev. 1SS, 1515 (1967).' John D. Stack (private communication).
~7 H. F. Jones, Nuovo Cimento 50A, 814 (1967).
~8 B.Diu and M. LeBellac, Nuovo Cimento 53A, 158 (1968).
'9 G. C. Fox, Ph. D. thesis, Cambridge University, 1967 (un-

published).
'0 K. Leader, Phys. Rev. 166, 1599 {1968).
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/
S = s~ + s~

m+, s+, q&

are p and p', respectively, and are given by

ps =[t (m—g+ ms)'][1—(mg m—s)s]/4t,
p"= [t—(ms+m4)'][t —(ms —m4)']/4t.

(2)

s channel

It is convenient to introduce separate terminology for
the square roots of the brackets in Eq. (2). Thus we
delne

mf, s) t S - s& + s&

t channel

T~ [t———(my+ ms)']'"

Tp [t (m——g
——ms)']'",

TN'= [t (m—,+m, )s]~Is,

Tp'= [t (ms —m—4)']'",

(3)

Fzo. 2. Diagram de6ning notation for Russell-Saunders coupling.
The t-channel process is m1+m2 —+ nze+m4, where the ith particle
has mass, spin, and intrinsic parity m;, s;, and q;, respectively.
The initial and anal momenta in the center of mass are p and p',
respectively, while the channel spins are S=s&+s2 and S'= s3+s4,
and the orbital angular momenta are L and L'.

confusing and even subtle aspects of these problems
are hopefully illuminated by parallel treatment of some
examples in terms of Feynman perturbation theory and
the use of invariant amplitudes.

II. NOTATION AND BASIC CONCEPTS

The present discussion of kinematic singularities is
based entirely on the use of orbital angular momentum
and the standard centrifugal-barrier factors of non-
relativistic quantum mechanics with no consideration
of crossing relations. That nonrelativistic concepts
should be suitable at thresholds is not surprising. But
in spite of the use of orbital angular momentum argu-
ments for some aspects of these problems 8'4'~~' it
does not seem to be recognized that a consistent dis-
cussion of the whole question can be given in those
terms alone.

Our interest ultimately is in peripheral processes
and the Regge-pole model. Consequently, the t-channel
amplitudes and their singularities are emphasized in
the choice of notation; the treatment is readily tran-
scribed to other channels. We consider for the most part
amplitudes with all four external masses diBerent in
order to separate the normal and pseudothreshold
Doints from t=0.

A. Notation

The general labeling of the variables is indicated in
Fig. 2. The t-channel process is

1+2-+3+4,

where the ith particle has mass m;, spin s;, and intrinsic
parity g;. The initial and 6nal center-of-mass momenta

~' J. Franklin, Phys. Rev. 152, 1437 (1966); 160, 1582(E)
(1967).

where the subscripts E and E stand for normal threshold
and pseudothreshold and the prime or lack of it is
associated with p' and p. From Eqs. (2) and (3)
we have

T~Tp 2(gt) p——,

TN'T p'= 2(gt) p'.
(4)

The t-channel helicity amplitudes are functions of t
and cos8&. For discussion of analytic properties we will
make considerable use of the expression for cos8& in
terms of s, t, and m:

cosgg =
1

4pp'-

(mP —ms ) (ms' —m, ')—
s—u+ . (5)

Evidently, then, (tpp' cos8,) is a polynomial in s, t, and
I, possessing no threshold or other singularities.
Another convenient relation is that between the Kibble
boundary function q (s,t, )u,

ss

9 (s, t,u) = stu —s (mPmss+mssm4')

—t (mPms +ms'm4') —u(mgm4'+ms'ms )

(1 1 1 1
+2mPmssmssm4'~ + + +, (6)

Lm, m, ' ms' m4'
'

and sin8&.
(p=4tp p" sin'8, . (7)

B. No Syins

The existence of kinematic singularities is a compli-
cation entirely caused by the presence of particles with
spin. Without spin, the threshold behavior of partial-
wave amplitudes provides just the necessary powers of
momenta to combine with the corresponding Legendre
polynomials to give expressions manifestly free of

"T.Kibble, Phys. Rev. 117, 1159 (1959).
"As is well known, the symmetry of q between the three

channels allows one to infer that p also satishes Eq. (7) with the
corresponding s- or I-channel quantities on the right-hand side.

The virtue of Eq. (7) is that it tells one what powers of
momenta and energy to associate with sin'g~ in order
to obtain a polynomial in s, t, and I of impeccable
analytic properties. "
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kinematic singularities. Consider a spinless process with
invariant amplitude A expanded in a partial-wave
series:

A (3,8,) =P (2L+1)A r, (t)Pr, (cos8,) .

We focus our attention on one of the thresholds, say
p~0. The behavior of the partial-wave amplitude
Ar, in this limit is as p~. This can be taken as a law of
nature, or can be derived from the Froissart-Gribov
formula and the Mandelstam representation (see, for
example, Ref. 21). Similarly, at P'-+ 0, Ar, P'z. Thus
Ar, (t) can be written as Ar, (i)=(pp') Ar, (t), where

Zr, (t) is an analytic function of t in the neighborhood.
of either threshold. The Legendre polynomials are
finite series of all even or all odd powers of cosg~, with
the highest power being (cos8&)~. This means that the
expansion (8) can be written as

A (t,8,) =P (2L+1)A I (t) (PP' cos8,)'
1

X 1+O i, (9)
cos'8, j

where the square bracket represents a finite series in
powers of (cos8~) '. From the definition of cos8~, Eq. (5),
we see that the combination (PP' cos8&) is analytic in s
and t except perhaps at t,=0. Furthermore, the square
bracket in (9) is also well behaved, since (cos8,) '
=Pp"/(PP' cos8&)'. Evidently, then, if the partial-wave
expansion converges, we have demonstrated that the
amplitude A(t, 8~) has no kinematic singularities. The
amplitude can, of course, be defined outside the domain
of convergence of the partial-wave series by analytic
continuation.

C. Outline of the Method

When spins are present, the situation is complicated
by a mismatch between the total angular momentum J
and the orbital angular momentum L. It is the latter
which governs the centrifugal-barrier factors Pz while
it is the former that determines the power of cose&.

Obviously, the difference (J L) will specify t—he power
of p and/or p' left over, and so the specific kinematic
singularity for the amplitude in question. In detail, care
must be taken to distinguish between normal thresholds
and pseudothresholds, so that various powers of TN,
TI, T~', and TI' will occur, rather than simple powers
of p and p'. This is spelled out in detail in Sec. III C.
But the basic approach is to use the concepts of non-
relativistic nuclear physics, to combine the spins of the
particles into channel spins, S- sr+ss and S'= sa+s4,
to add orbital angular momenta L, L' to give J=L+S,
J=L'+S' with due account of parity. The maximum
difference for (J L) is then determ—ined and the
kinematic-singularity structure established for each
term in the partial-wave series and hence for the full

amplitude. In practice, this is elementary and quick
to do for any specific case, as shown in Sec. III A and
Appendix 3, and also simple for the general case
(Sec. III C). But before proceeding to the relatively
trivial task just described it is necessary to discuss some
of the basic formulas concerning helicity amplitudes
and the differences between normal thresholds and
pseudothresholds.

P=ri( —1)~ ', (13)

where v=0 for integral J and e= ~~ for odd half-integral
J. For integral J, the natural-parity trajectories
(p,&a,Aa, ) have q=+1, while the unnatural-parity
trajectories (rr, At, .) have ri= —1. For odd half-
integral J, the E trajectory (a+ s+ ) has ri=+1,
while tbe 6 trajectory (as+ ra+, ) has ri= —1, etc.
In terms of g, the parity-conserving partial-wave ampli-
tudes, Eq. (12), are

Fy&x4, xzya =(X X4a~F ~XlXa)

+gritria( —1)'+' "(ltaX4IF
~

Xt—X,). (14)

"The expansion (10) is formally the same as Jacob and Wick's
Eq. (31), but their and our f differ by a factor of —8~(tp/p')'/',
with a corresponding diGerence in T~ and P~. For elastic scattering
of spinless particles our F~= —16a (gt)e"& sinzq/p."F.Calogero and J. M. Charap, Ann. Phys. (¹Y.) 26, 44
(1964); F. Calogero, J.M. Charap, and E.J.Squires, i'. 2S, 325
(1963).

'e M. Gell-Mann, M. L. Goldberger, F. K. Low, E. Marx, and
F. Zachariasen, Phys. Rev. 133, B145 (1964).

D. Helicity Amplitudes and Their
Partial-Wave Expansions

In the helicity representation the invariant amplitude
M yields helicity amplitudes fq, z, , q,&„with partial-wave
expansions '

f»~, x,x, (t,8,) =E(J+-',)&i al 4~P+(~) lit,~,)d,„'(8,), (10)
J'

where ) =X~—A, g, y=X3—X4. The properties of the
Wigner d function. s in (10) are well known. ' ""For our
immediate purposes we note that

dq„~(8) = (cosar8) '"+&~ (sin-', 8)~" &~Pq„~(cos8), (11)

where Pq„~(z) is a polynomial in z whose highest power
is z~-" and m is the larger of

~

X ~, ~ p [ .
It will be convenient to consider parity-conserving

amplitudes. ' For each J, parity-conserving ampli-
tudes are given by linear combinations of the helicity
partial-wave amplitudes in Eq. (10):

P~a":»~"=(~alt41 P'I ~tits)

+PI/tria( —1)~ " "(XaX4~ F~
~

—Xt—Xa), (12)

where P is the parity eigenvalue. Following Gell-Mann
et al. ," we choose the parity-conserving states in
anticipation of Regge trajectories and their equivalence
to a superposition of states in a definite spin-parity
sequence. Thus we introduce a parity factor p=~1
such that the parity of a given J state is
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Parity-conserving helicity amplitudes based on (10)
can be constructed after extracting the half-angle
dependence of the Wigner d functions shown in (11).
A detailed discussion is given in Ref. 26. We only quote
the key results. The so-called parity-conserving ampli-
tudes are defined by

~xi)4 Ages (iz)
= k(ei)f)„)„;)„)„(~P~)+n(—1)="gtns( —1)"+' "

X$(~—~i)fg, g, , )„)„(1,0'), (15)
where s= cosa~ and

$(8,) = [v2 cos—',8,] ~i+"'&& [W2 sinst0, ]—~"—&~. (16)

The amplitudes F& are almost the same as the f&+& of
Ref. 9. But care must be taken in relating g =+1 to the
(~) superscript of fP' The partial-wave expansion of
(15) in terms of the amplitudes (14) is

a'~,i, ~„,"(~,z) =P (Zy-', )[e,„'+(zy'„„,..., ~

J
+zxs (z)~xsx4x'xs ' ] (17)

The functions e~„~+(z) are defined in Ref. 26, Eq. (2.8)
and Appendix A.'8 For our purposes the essential facts
about the ei„~+(z) are that they are finite polynomials
in s of either all odd or all even positive powers.
Specifically,

The original helicity amplitude (10) can be recovered
by adding together the amplitudes (17) for q =+1 and
g= —1 and dividing the result by 2$. The virtue of
(17) is twofold: firstly, the half-angle dependence ( has
been removed so that the resulting t-channel amplitudes
have only dynamical singularities in s, ' "and secondly,
the dependence on J and parity is explicitly exhibited
with coefficients which are polynomials in s. The
problem with spins has thus been reduced as far as
possible towards the example of no spins.

E. Normal Thresholds and Pseudothresholds

The process illustrated in Fig. 2 has four t-ch an-
nel thresholds, 1=(mt+ms)', (ms+m4)', (mt —ms)',
(ms —m4)'. Since we will consider the initial and final
states separately, it will suffice to discuss only the
two thresholds of the initial state. The first one [1

"If we de6ne g~ to be equal to the ~ sign in L. L. Wang's
de6nition of f&+&, then the connection is

~~=q( —1)~+"qan4( —1)'3+ 4-.
' They should not be confused with the functions e)t„~(s),

deaned, for example, by Andrews and Gunson $M. Andrews and
J. Gunson, J. Math. Phys. 5, 1391 (1964)j.The latter are related
to d),„~ as Q~ is to Pf, while the present functions are linear com-
binations of d)t„~ and d)t, „with the half-angle factors extracted.

where p=msinhf, E=mcoshf The .unphysical com-
plex "boost" which transforms the particle from a state
at rest with E=m (normal threshold) to a state at rest
with E= —m (pseudothreshold) has g=im For . the
irreducible representations of the Lorentz group used
to describe particles of definite spin S [labeled (S,O) or
(0,5)], K has the same representations as iJ. Thus we
see that the transition from normal threshold to pseudo-
threshold for particle I. gives back the normal threshold
state multiplied by a phase factor exp(i~hi). As a
consequence, if we consider the helicity amplitude (10)
near the pseudothreshold, the spin structure of the
right&hand side will be as if the particles were "normal"
particles at a normal threshold, except that there will be
a phase factor exp(in. Xt). We can therefore define new

amplitudes, called pseudoamplitudes,

fka) 4;Ages ( 1) fxmx4;xzxs) (19)

to which the ordinary laws of addition of spin and
orbital angular momenta can be applied at the pseudo-
threshold Consideration of the parity transformation

[Eq. (44) of Ref. 5] applied to the pseudoamplitudes
shows that there is an additional factor of exp(2mhti)
=(—1)"& in the connection between fi»„,",i,~ and

f x, i, , ", &„~ over what appears for the f's This can.
be interpreted as an effective change of the intrinsic

parity of particle 1 from gt to gt( —1)"&.The change in
intrinsic parity for the lighter fermion at the pseudo-
threshold is familiar for spin ~ in the connection
between negative-energy states and antiparticles, as is,
in fact, the phase factor. This change in the effective
intrinsic parity of a fermion whose energy is 8= —m

at the pseudothreshold has already been pointed out by

= (mt+ms)'] is the normal threshold, while the second
[~= (mt —ms)'] is called the pseudothreshold. In non-
relativistic quantum theory we are familiar with only
the normal threshold, but p vanishes at both. It is
almost unnecessary to say that at the normal threshold
such ideas of nonrelativistic quantum mechanics as
the vector addition of angular momenta and the
straightforward application of parity conservation can
be utilized without further thought. But care must be
taken at the pseudothreshold, .

At the normal threshold the particles are at rest
with E&——m& and E&——m2. Inspection of the energy
expression for each particle shows that at the pseudo-
threshold the particles are again at rest, but E~= —m~,
while E2™2,where the particles have been labelled so
th~™&(m2.The change in sign of the energy of the
lighter particle in going from the normal threshold to
the pseudothreshold has two consequences. " The
single-particle state

~ p,E,X), where the momentum is
along the s axis, can be obtained from the state at rest
(normal threshold) ~0,m, X) by application of a "boost"
operator

~ p,Z,X)=z-'rx~~ 0,~,~),
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Frautschi and Jones, " and also by Franklin in his
erratum"

In summary, the normal thresholds and pseudo-
thresholds can be handled on an equal footing with
nonrelativistic quantum mechanics provided that at a
pseudothreshold. two modifications are made: (1) that
the intrinsic parity g~ of the lighter particle is replaced
by (—1)"gi, and (2) that the pseudoamplitudes (19)
are considered rather than the regular amplitudes (10).
The first modilcation has the consequence of giving
different kinematic singularities at the normal thresholds
and pseudothresholds if the lighter particle is a fermion.
The second alteration is important for the kinematic
constraints or threshold relations among the amplitudes,
independently of whether the lighter particle has
integral or half-integral spin.

The remaining point is specification of the threshold.
behavior of the partial-wave amplitudes (14). Suppose
that the smallest allowed values of orbital angular
momentum in the initial (final) state at the normal
(pseudo) thresholds are L~ (Lr) $LN' (Li')]. Then we
will assume that Ii ~& can be written

Fi,)„;x,i„'"=(T'~)'"(T~)"(T'~')'"'(Tz')"'
XF&„i,;i„&„&, (20)

where T~, etc. , are the threshold factors (3), propor-
tional to the nonrelativistic momenta at the respective
thresholds, and P~& is a reduced partial-wave amplitude,
free of threshold singularities. The partial-wave
threshold behavior contained in (20) seems to be
contrary to that obtained for xX —+ 7' by Frye
and Warnock'9 at the s-channel pseudothreshold
s= (m —p)'. As discussed by Franklin, 2' their result
hinges on the coincidence of the I-channel normal
threshold and the s-channel pseudothreshold, and does
not apply for unequal masses. Franklin also argues that
the &acmatic threshold singularities are always given
by (20); other behavior can be viewed as dynamical.

III. KINEMATIC SINGULARITIES

A. ~~' —+ Nb,

The basic tools for the analysis have been described
in Secs. II C and II K. Before proceeding to the general
case it is instructive to consider a speci6c example,
namely, the s-channel process of isobar production,

(0 )+(2') ~ (0 )+(2')
examples of which are 7r+p ~ ~'A++ and K p —+ m. Fi*+.
We will, for convenience, write the t-channel reaction as

I

(1)+(2) ~ (3)+(4),

with the lrst-mentioned process in mind, but the results
apply to any reaction with the same spins and parities.

~~ G. Frye and R. L. Warnock, Phys. Rev. Do, 478 (1963).

TARSI.E I. Minimum I. and I,' values (and associated channel
spins 8') for xx' ~gh and the corresponding threshold behavior
of J J+.

L values L' values
JP Normal Pseudo Normal Pseudo

0+ 0 0 1 2
(s'=1) (s =2)

2+ 2

0 1

(s =1) (s =1,2

1 0

(s' =1, 2) (s' =2)

2 1

(s' =1, 2) (s' =2)

fhreshold behavior

Ter'T p'2

4tpp'
TKTpTp

TN

(4V~')~
(TNTp))TN' ~

TN'Tp'~

(«PP') ~

(TxTp) 3Tw'2T p' =
Tx'Tp'2

The process xm' —+/A is an especially good one
because it is relatively simple, with only four in-
dependent amplitudes and spinless particles in the
initial state, but it still has a relatively complicated
kinematic singularity structure because of the spin-~
and spin-~3 baryons in the 6nal state. Because of the
zero-spin particles of the same intrinsic parity initially,
the allowed angular momentum parity states belong to
the natural parity sequence (g=+1). Thus only F~+
in (14) is different from zero and just the first term in
(17) occurs. Another way of saying it is that for this
reaction the basic helicity amplitude (10) is already a
parity-conserving amplitude in the sense of Ref. 26.

We now proceed to construct the channel spins and
parities. For the initial state we obviously have

S~=0+, S~=0+,

where the subscripts X and I' denote normal thresholds
and pseudothresholds, respectively. For the Anal state
of g(i2) and h(a~+) we have

Sg —1 ) 2 )

Sp' ——1+, 2+.

Note that for the pseudothreshold the X parity has
been formally reversed according to the rules of Sec,
II E. The laws of addition of angular momentum and,

parity conservation are applied to the orbital angular
momentum L and the channel spin S to yield a total
angular momentum J and parity (—1)~. The results
of this elementary calculation are tabulated in Table I.
Where more than one L or I' value is possible, only
the smallest one is tabulated, because that is the one
which governs the threshold behavior of the amplitude
in (20).

The 6nal column in Table I exhibits the threshold
behavior of F~& according to Eq. (20) for successive
partial waves. While the erst two J values show
abnormalities which are of interest in understanding
differences that arise between the general results and
the singularities found for speci6c Feynman diagrams
(see Sec. IV C), a pattern establishes itself for J)~2.
For the Jth partial wave (J~&2) the threshold. be-
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havior is
(21)

where E does not have singularities at the four thresh-
olds. From (17), (18), and (5) it is seen that the
combination of s~ with the numerator in (21) yields an
analytic structure free from kinematic singularities
for each J value, at least for m= ~p~ =0."Thus the
class of helicity amplitudes with X3=X4 can be written

f&&;oo= o&xz;oo+=~w(& ~)l&x'&I' (22)

where Aqq(s, t) is free of kinetic (threshold) singu-
larities. This result is io agreement with the general
results given by Wang' and others.

B. Behavior at the Physical Boundary:
Powers of t

For P, p/0 the discussion of the previous section is
incomplete. The threshold singularities are determined.
correctly, but the behavior of the helicity amplitudes
(10) at the boundary of the physical region and at t= 0
was not considered. For all four masses unequal there
are no singularities in the helicity amplitudes at t=O.""
Indeed, for (mP —mo')(mo' —m4')(0 the point I=O
lies inside the s-channel physical region where, from
the crossing relations, it is clear that the continued
t-channel amplitudes cannot have singularities.

The singularity at the physical boundary arises
from the half-angle factors in the connection between
the helicity amplitudes f [Eq. (10)$ and the parity-
conserving amplitudes Ii" [Eq. (15)$. The latter are
functions of z=cos8& and so have no singularities at
q =0. But sin-', 8, is proportional to gq near cos8~ ——1
and, coso8, is proportional to gy near cos8, = —1.
Hence the helicity amplitude (10) will behave as

f~,q, ,~g„~ (gq)~" &~ for cos8~=1
~ (goo)~ "+&~ for cos8~= —1. (23)

The behavior at the two ends of the physical region
can be written as (goo)~~~, where M is the difference
between the initial and final z components of total
angular momentum. 4 "

The parity-conserving amplitudes Ii& have singu-
larities at t= 0 as a consequence of the half-angle factor
$ [Eq. (16)), even though the f amplitudes do not.
From (5) it follows that near t =0, cos8~ = o+0(t), where
o=+1 for (m~' —mo')(mo' —m4')()0. This means that

For m&0 this added singularity must be included along
with the threshold factors such as (21).

For the example of ~m' ~1V'6, where A, =O, insertion
of a factor (gI) ~&~ into (21) leads tohelicity amplitudes
of the form

X3P4; 00

(Qy) ~ &~A g,)„(s,t)
(25)

Pt (mo——m~) 'j[I—(my+ m~)'7'"

C. General Result

The example discussed in Sec. III A can be general-
ized in an obvious way. Combining (20) with (17),
taking cognizance of (18), and including the 3=0 be-
havior [Eq. (24)j, we see that we can write

F&s4'4&oo [(2&)~N(T&)~ (T~')P~(T~')OP(QI)I&I+~vlgl

XA~,), x,~,"(s,t), (26)

where A(s, t) has only dynamical singularities, and the
exponents are a;=J—L;—m and P;=j L m. T—he-
differences (j L) are the "m—ismatches" discussed in
Sec. II C."There is one question, namely, whether or
not (j L) is indep—endent of J. Inspection of Table I
shows the general behavior. For small J there are
differences caused by the channel spins being larger
than J. But for j)~S,„, the difference (J I.) is-
independent of J. Physically, this occurs because the
minimum orbital angular momentum demands the
maximum channel spin. Then (J L) is equal to S—
or (S —1), depending upon the parities involved. The
only slight problem for the general case is exhibiting
the switch that gives S, or S —1 in a compact
manner. The erratic behavior of the I.and I-' values for
small J is of no consequence, because the threshold
behavior for those partial waves differs from the
standard pattern by positive even powers of the T's
(see Ref. 30).

We consider 6rst the initial state, with S, =s~+so.
At the normal threshold the intrinsic parity associated.
with the channel spin is q~q2. For a state with total
angular momentum j and parity q(—1)~ ', the mini-
mum allowed orbital angular momentum is

where Aq, q, (s,t) is free of singularities at the kinematic
thresholds, on the physical boundary, and at t=O.
Equation (25) exhibits the threshold singularities ex-
plicitly, as well as the known behavior at the boundary
of the physical region.

L=J (san+so)+—
1

if rIg,g, (—1)»+'o-I=

near t=0. Consequently, the t=0 singularity of Ii& is

(24)

~The J=o, 1 partial waves differ from (21) by positive even

powers of T&' and TI', and so have the same singularity structure
as J&~2.

This can be written in the form

L=j (s,+s,)+o[1—
UU, U, (—1)'—' "3. (27)

3' The second term in (17) seems to give rise to one more power
of (4tpp'), but this is compensated by a difference of one unit in
I., I' in the threshold behavior because of its opposite parity.
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Equation (27) is the basic result 1.hat gives the n's and
P's in (26). The only caution. to be observed is at the
pseudothresholds where the effective intrinsic parity
of the channel is rttrts( —1)"'. The four exponents are

arr =st+ ss m—s—[1 rt—rttrt, ( 1—)"+'~'],
rrr =st+sr m—s—[1 rt—rttrts( 1—)'~" 'j,
P~ ss——+s4 m—', [—1 -rtrt—srt4( 1)—'&+'4-'1,

Pp=s +s4 ris —'[—1 -riri—,ri4( 1)—'4 's 'j.
(28)

For defmiteness in (28), it has been assumed that
mr(rrts, ms(m4. Note that for integral J (i.e., v=0)
the choice of which particles are lighter is immaterial.

The results contained in (26) and (28) can be shown
to be exactly equivalent to those of %ang' and Cohen-
Tannoudji, Morel, and Navelet" for the case of all
unequal masses, although some care must be taken in
correlating correctly the parities. ""The specialization
to equality of various masses has been discussed in
Ref. 9 and much more thoroughly in Ref. 10, where the
analyticity in Qt for half-integral J is also treated.
(see also Hara' ). The above results hold for positive
values of gt if J is odd half-integral.

IV. THRESHOLD RELATIONS

The various helicity amplitudes for a given process
are in general related only by dynamical assumptions.
But at certain regions in the (s,t) plane there are
connections among them. One type of relation occurs
at the boundary of the physical region (s= &1), where
amplitudes with (X&ti) WO must vanish by conservation
of angular momentum. The crossing relations' ' then
imply that certain linear combinations of the crossed-
channel amplitudes vanish there. This type of con-
straint, first noted by Goldberger, Grisaru, MacDowell,
and Wong, '4 is discussed in general by Abers and
Teptitz. 35 Our interest is in another kind of relation
between helicity amplitudes, one that occurs at the
kinematic thresholds. For unequal masses these
thresholds are distinct from any boundary of the
physical region.

Threshold relations between amplitudes of diGerent
helicities are almost trivial if one restricts oneself to
the physical region of cos8. Thus, for a physical process
at threshold, only those amplitudes with orbital angular
momentum L= 0 will be nonvanishing. Typically, only

~2Actually the results of Wang are in error at the seudo-
thresholds for half-integral J (boson-fermion scattering when
the boson is heavier than the fermion. But for the important cases
of m.N or KN scattering they are correct."In comparisons with Wang (Ref. 9), the parity correspondence
is given in Ref. 27. The other essential ingredient is the
identity max(g) of t NJ=N —e—~(i —p( —1)N~), where the left-
hand side is a notation of Wang. v =0 if N is integral and e=~
if N is odd half-integral. With Ref. 10 further care is necessary
because the authors do not use Jacob and Wick's phases for
particles 2 and 4.

34 M. L. Goldberger, M. T. Grisaru, S.W. MacDowell, and D. Y.
Wong, Phys. Rev. 120, 2250 (1960).

ss E. Abers and V. Teplitz, Phys. Rev. 158, 1365 (1967).

FIG. 3. Schematic Mandelstam diagram showing the physical
regions of s, t, and u. The dashed line AB represents the normal
t-channel threshold, I,= (m3+m4)~ or t= (m1+m2)'. The point 0
is the physical threshold in the t channel, where

~
cosa& )

&~1.

one term in each partial-wave expansion, that with
J=S, will survive, and the diGerent helicities will be
related by an ordinary angular momentum Clebsch-
Gordan coefficient (s,see, —Xs~S(X,—Xs)). This was
pointed out by Jones&'r who discussed the normal
thresholds, but applies equally to the pseudothresholds
with the modifications discussed in Sec. II K.

The argument of the preceding paragraph is correct
for amplitudes at threshold with

~

cosei
~

&~ 1. This
corresponds to the determination of relations among the
amplitudes at the point 0 in Fig. 3. But it is desirable
to know what constraints occur all along the line AB,
that is, for fixed threshold values of t, but arbitrary s.
Equation (5) shows that, for arbitrary s, cos8i becomes
infinite at the t-channel thresholds; the point 0 in
Fig. 3 is the only exception. This means that all J
values in the partial-wave expansion contribute, not
just those corresponding to L=O." It turns out that,
while this complicates the analysis somewhat, it is still
possible to exhibit systematically the threshold relations
among the amplitudes. The method of Jones" some-
times yields the same connections as the present
approach, but his development is really only valid at
the threshold in the physical region. Pion-nucleon
scattering is one example. This is discussed in Appendix
8 from several points of view.

An alternative, but entirely equivalent, way of
establishing these relations at threshold is the use of
invariant amplitudes. This approach has been em-

ployed by Abers and Teplitz" in their Appendix for
scalar-meson —vector-meson scattering, and by Diu and
LeBellac" with special attention to t =0 (for NN ~ wo,
glV-+ wy). We discuss the use of invariant amplitudes
in Sec. IV B.Another equivalent method, discussed by
Cohen-Tannoudji, Morel, and Navelet, ' utilizes trans-
versity amplitudes and the singularity structure of
their crossing matrix. This yields linear combinations
of helicity amplitudes (and sometimes of derivatives
of helicity amplitudes) that vanish at threshold.

'6 This point was emphasized to the authors by R. D. Mathews.



1256 J. D. JACKSON AND G. E. HITE

A. m~' —+ Nd.

To illustrate the threshold relations we consider our
previous example, mz' ~ /h. Only the XA thresholds
are relevant here. We 6rst examine the normal threshold,
t= (4444+4r44) . The helicity amplitudes (10) can, in this
case, be written

fi,i,;oo=Z(J+-')(&04(F'(00)do, '(8~), (29)

where p=X3—X4. At threshold it is appropriate to
introduce a Russell-Saunders coupling expansion for the
partial-wave amplitude (I~o&4I F'I oo):

(X I%, (F~(00)= P (s s, Ii —X4~S'p)
Lf Bl

X (L'S'OI4
~
JI4)FN~(L', S'), (30)

Thus the right-hand side of (32) can be expressed as

2 N 2 p f44i4;00

=p(sos4lio h4—~S'I4)I4' '(4-tpp')'d»'(8, )
8/

Xp(J+-')F (J—1, S')&s (J) (4Ipp's)
'

(34)

The use of (33) is the key step in the development
because it causes the separation of the helicity depend-
ence from J.The two terms in the S' sum of (34) have
explicit dependence on X3, X4, and p times a partial-wave
series that depends only on S' and on the polynomial

4tpp's = t (s 44)+ (4r—4io —444oo) (4i4oo —m4').

where the sum is over S'= 1, 2 and all allowed L' values.
FJ(L',S') is the reduced matrix element, and is a
function of t as well as its visible indices. Near threshold,
F~(L',S') has a behavior (TN) '. Thus, for fixed S' we
need. only keep the minimum L' value, as given in
Table I, and also only keep one S' value if that happens
to have a smaller L' than the other. At the normal
threshold, the minimum L' value is LN' J 1(apart—— —
from the first two J values —see Ref. 30). Both values
of channel spin can occur. For elegance in later formulas
we extract not only the i'd normal-threshold behavior,
but also the factors occurring in Eq. (20) for the other
thresholds as well. Thus we write

FN'(L'= J »S') = (2'N—2'~)'(2'N')' '(&~')' '
X&N'(L'= J 1, S'), (31—)

where E~ has no singularities at threshold. The factors
other than (TN')~ ' can be thought of as merely
constants. Multiplying both sides of (29) by TN'Ti"
and making use of (30) and (31) with L'= J 1, we-
obtain the nonvanishing part of the numerator of Eq.
(25) near t= (mo+4444)':

2N 2 p fioi4;oo

=P(s, s4I, I 4~S'P)—P(J+ ', )PN (J-1,S')—

The partial-wave expansions can be assumed to con-
verge, at least if the s values are on the line AB in the
neighborhood of 0 in Fig. 3. Labeling these J sums in

(34) as ys (s), we have, at t= (4444+4444)',

TN'Tp fk k, ;00 yi(s)($ —,
'

Iio —4~ 1p)(4&PP')do„'(8i)

ypyo(~)(l l I 4
—I 4I2p)(4tpp')'do (8i) ~ (35)

Equation (35) shows that the four helicity amplitudes
are related at t = (no+4444)', actually depending on only
two dynamical functions of s. We note in passing that,
if cos0& is held in the physical domain as threshold is
approached, only the Iirst term in (35) survives. Thus
at the point 0 in Fig. 3 the helicity amplitudes are
determined by a single constant, the J= 1, L=0, S=1
amplitude, as can be seen from Table I. Away from
0, the relations written out in detail are [remember
t= (444,+m4)']

~ '2'."f:;o.= (Il~~)(4V p")y,
&N'&z' f4 4; oo = (I—/V'g) [yi 3 (4"PP's)yo]

(36)
X (4tpp' sm8&),

T 'T "fI~;oo=(V'l)9'+(4IPP' )y j;
X (4IPP' sin8,),

2N 2 & 'fl, 44;oo= (V'o)yo(-@pp' »n8i)'

X((J—1)S'Olt4
i Jp)do„~(8() (4tpp') ~ (32).

It is clear that only the highest power of z in the d
function will survive at threshold. It is shown in
Appendix A that the product of Clebsch-Gordan
coeS.cient and the leading term of the d function
appearing in the sum over J can be written LEqs. (A6)
and (A7))

((J—1)S'Op
~
Jp)do„(8g)=I''s()''o'(~) ( )

Here we have identified particles 3 and 4 as d and E,
respectively. It is easy to translate (36) into expressions
for the singularity-free amplitudes Aio&, 4(s, t) in (25).

We now consider the pseudothreshold t= (4ioo —4i44)'.

The arguments are the same, with the modification of
the intrinsic parity of E and the use of pseudoampli-
tudes (19). Table I shows that the minimum orbital
angular momentum is now L'= J—2, and only S'=2
need be considered. "Thus the sum over L' and S' in

(30) reduces to a single term, and the equivalent of

' For S'=1+, only one I.' value occurs for each J, namely
where S'=1„2and, as. (J) is given by (A9) and (A10). I.'=J.
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(32) at t=(mo —m4)' is

TN TP fioi4; 00

= (—1)~"4(-,' —', Xo —X4I 2 p)P (J+-,')fop~(J —2, 2)

X((~—2) 20~ I ~~)do.'(~ ) (4V P')'.

Use of Appendix A, Eq. (AS), allows separation of the
helicity dependence from J. Then the J series can be
formally summed, an.d (37) becomes

TN'Tp"fi, )„;oo=yo(&)(—1)' "'(0 0 70 —7412u)
)& (4tpp')'do„'(8 ), (38)

showing that the amplitudes are related to a single
function yo(s) at the pseudothreshold. Here it happens
that the method of Jones, 'r based on only the L'=0
contribution, gives the same result, as can be seen from
Table I. The equivalent of the four equations in (36)
are [t= (m, —m4)']

TN'TP"f~. ; 00= (&/V'S) (@PP's)'y,

sing&
TN'Tp"f;, 4;00=- TN'Tr "f;4,;00,

cosa)
(39)

sino&
TN TP f/); 00 TN TP f~& &~

~ 00 p

3 cos8~

1 sino g

TN'Tp' fg, ;;00= —TN'Tp' f, 44;oo

V3 cos8]

Here the ratio (sin8, /cos84) is equal to &i at threshold,
but is better given a meaning through the boundary
function as

(sin84/cos84) = (+00)/L2 (m, —m4) pp'sg.

Equations (36) and (39) do not exhaust the relations
among the amplitudes at threshold. The results derived,
so far concern the most singular parts of each amplitude.
If we imagine expansions of the amplitudes in powers
of T~" around the normal threshold or TI»" around the
pseudothreshold, we can ask whether or not there are
relations among the coefBcients of higher powers of
T", i.e., among the derivatives of the amplitudes with
respect to t, for 6xed. s. In order to obtain such relation-
ships, if any exist, it is necessary to retain more than
the lowest L' value for each J in the Russell-Saunders
expansions and. lower powers of s than the highest in
the expansion of the d functions. A discussion of the
present example is given in Appendix C. It is not
difFicult to show that at the normal threshold no re-
lations beyond those contained in (36) occur. The basic
reason is that the 6rst-ord. er terms in T~" receive
contributions from L'= J—1 and L'= J+1 for both
S'=1 and S'=2. Four unknown functions of s, analo-
gous to yi and yo in (36), are thus introduced. Since

there are only four independent helicity amplitudes, no
relation among the derivatives arises.

At the pseudothreshold, however, the Grst-order
terms in TI' involve L'= J for 5'= 1 and L'= J—2 and
L'= J for S'=2. Only three unknown functions are
present; there is thus one relation, (C5), among the
first derivatives. With the T~" terms the 6nal L' value,
L'=7+2 for S'=2, enters and there are as many
unknown functions as there are amplitudes. The one
derivative relation (C5) is written here for con-
venience as

f;;,oo+f;, ;;oo—(1/&)(fg), 00+fy, 4,;00) -"'

(mo ——m4)'

f4, 00&0& . —
(mo —m4)'-

1—
3 (mo —m4)' (Tp's)'

(40)

The tilde amplitudes, defined by (C2), are such as to
remove the powers of (sin84/cos94) in (39). The super-
script zero on both sides indicates the value at pseudo-
threshold.

In a Regge-pole model the threshold relations em-
bodied in (36), (39), and (40) impose constraints on the
residue functions Pion„(t) at t= (mo+m4)0. These con-
straints are as important as the kinematic singularities.
Indeed, the two are diferent aspects of the same
kinematic phenomenon. In practice the relations at the
pseudothresholds are most important in peripheral
processes because of the proximity of these thresholds
to the physical s-channel region. For the reactions
0r+p —& vrouw++ and K+p —& K06++, the XA pseudo-
threshold is at t=0.09 (GeV/c)'. Its closeness to t~0
and the degree of kinematic singularity there I see

Eq. (25)J demands careful attention to the constraints
contained in (39) and (40), as we shall discuss in
detail in Sec. V B.

B. Invariant Amplitudes for ~~'~ Ã4

A method of incorporating the kinematic-singularity
structure and the threshold relations is the use of
invariant amplitudes, as was n1entioned in the Intro-
duction. We examine the amplitudes for mx' —+Eh
within this framework in order to make comparisons
with Secs. III and IV A. The Feynman amplitude
for the s-channel reaction, mlV —+w'6, has the general
form

M = U„(P')O„yo04(P),

where U„(p') is the Rarita-Schwinger wave function'0
for the 444, N(p) is a Dirac spinor for the X, and 0„is a
polar vector made up from the available momenta and
Dirac y matrices. "It is not dificult to convince oneself

W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941)j
Kusaka, ibid. 60, 61 (1941).

"The Dirac notation used bere is that described by J. D.
Jackson and H. Pilkuhn, Nuovo Cimento Bs, 906 (1964), Ap-
pendix A. See also the present Appendix B, Sec. 3.
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that the most general structure for the amplitude is~

~= ~.(P'){L—~i+sr l(C+C')Bi](V+&'),
+I ~ +4&' (rt+rt)B j(rt rt) )'Y 44(p) (41)

(t+ moo
—m44)

ft t; oo= (v's) (2pp's)~ i+
m3TN v'6 ms

TN TP
A2

1 mo+m4
+(v'4) Tr "(2pp's)'

TN TP m3

—12t(pp's)'y4tp'p" Bi

mo —m4)—(v'l) 12'~'(pp") B
m, i

where q and q' are the 4-momenta of x and m', respec-
tively, and the A; and 8; are four arbitrary scalar
functions of s and t. The notation is chosen in analogy
with mE scattering.

The t-channel amplitude is obtained from (41) by
substituting q

—+ p, , q'-+ —pi, p ~ —p4, p' ~ po, and.

N(p) ~ s(p4). The Jacob-Wick helicity amplitudes are
constructed by choosing definite helicities for X and 6
in the center-of-momentum frame. The reduction is
straightforward and yields

yi, ps and Ai, Bi at t= (mo+m4) ale

L4mom4A i—(3mo m4—)pp'sBi j,
v3 (m, +m4)

2V3 (m4+m4)'

At the pseudothreshold, all the amplitudes are propor-
tional to Bi and the relations (39) are obtained.

The derivative relation (40) follows directly from
the kinematic structure in (42). That such a relation
exists is evident from the fact that the invariant
amplitude A2 has as its coeKcient TP'4, relative to the
most singular terms. This means that near TP' ——0, the
first-order terms in TP" will involve only A», 8», and. Bg
and a derivative relation will occur.

The use of invariant amplitudes has its obvious
virtues in handling the kinematic singularities and
threshold relations in an automatic way. The only
difhculty for a process involving high spins is the
establishment of a set of invariant amplitud. es. This
has been solved, in principle at least, by Hepp' and by
Williams, ' and worked out for a number of cases by
Fox,4 from the starting point of M functions. A dis-
cussion of kinematic-threshold constraints from the
point of view of M functions, with special reference to
xx'~Xh, has been given by Stack.~

,
—(ds)~i

TN—
(42)

C. Dynamical Exceytions

(3m, (m, —m4)+ Ti ")
+(4-:) (2pp")B.

m3TP
1 TN

V'6 m,

v2v'o (2pp's)
f4;, oo= ~ i—(mo —m4)

TN TP

f», t oo=~&—
TN TP

In writing (42), we have assumed that rr and or' have
the same mass in order to simplify somewhat the
kinematics.

The kinematic singularities established in (25) are
evident in the expressions (42). The operator structure
of (41) is such that the kinematic singularities are
built in; the invariant amplitudes are then free of such
singularities. Similarly, the threshold conditions (36)
and (39) are satisfied automatically. At the normal
threshold only terms in (42) involving Ai and Bi
survive. The four amplitudes are thus given in terms of
two, just as in (36). The specific connections between

~ S. Mandelstain, I. E. Paton, R. F. Peierls, and A. Q. Sarker,
Pnn, Phys. (N. Y.) 18, 198 (1962),

The results of Secs. IV A and IV 8 give a description
of the singularities of and relations among amplitudes
resulting solely from kinematics. The assumption of
specific dynamical mechanisms may cause departures
from the purely kinematic results. Two reasons for
such departures are (1) the presence of only a limited
number of low J values, and (2) the absence of some
values of channel spin.

Anomalous behavior for small J values is illustrated
for ~x'~NA in Table I. For J=O+, 1. the standard
singularity behavior of Eq. (21) does not occur. If
J=O+ were the only state contributing, the amplitudes
would vanish as TN'TP" at the thresholds, rather than
being in6nite there. For J=1 the amplitud. es have the
standard behavior at the normal threshold, but are
finite at the pseudothreshold rather than varying as
(Tp') '. Going along with the less than standard
singularity behavior is a departure from threshold
relations such as (36), (39), and (40). In general, these
anomalies of the first kind will occur in dynamical
models that involve angular momentum states with
J((sr+so), (so+s4). For such states the minimum
orbital angular momentum for each J cannot be
physically realized; a higher I.value is necessary, with
correspondingly less singular behavior at the threshold.

4' J. D, Stack (unpublished).
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8»=0, Bg=—
(mp+m4) (mv' —t)

Here g is the zm'V coupling constant and my is the
mass of the vector meson. The kinematics have again
been simplified by taking the m and x' masses equal. The
notable point about these amplitudes is that 8»=0
(7=1 cannot have 44=2). The remaining amplitudes
(42) are finite at T~'=0 and the interconnection (39)
becomes empty. At the normal threshold, y&

——0 in (36)
and the 6rst three amplitudes are all proportional to
one another, while the fourth vanishes, as be6ts a
situation where 7=1 and L'=0 (see Table I). The
derivative relation (40) holds in a degenerate form with

ft a pp= 0 on the left- and the right-hand side equal
to zero because the tilde amplitudes (C2) vanish at the
pseudothreshold.

For speci6c couplings, even the remaining relation
at the normal threshold may disappear. The Stodolsky-
Sakurai model, ~ for example, with its purely magnetic
dipole coupling (no electric or longitudinal multipoles)
corresponds to

TN mp+m4
G2, G3= G2.

2mp(mp+m4) mp

Now A» vanishes at the normal threshold. The helicity
amplitudes are proportional to T~' instead of its
reciprocal, and. (36) becomes an empty statement. In
fact, the four amplitudes reduce to two at all values
of $: f 4 SS f1 SS—0—

(43)
f144 ppSS=V3fa p. p4.SS

The one independent amplitude vanishes at the normal
threshold and is finite at the pseudothreshold. The
derivative relation (40) is satis6ed trivially.

The second cause of anomalous behavior, absence of
one or more values of channel spin, can be seen from
Table I, or equivalently (37) or (42). If, for example,
the dynamics are such that channel spin 5'=2 is not
present, i.e., B,(s,t) =0, the amplitud. es will have less
than the standard singularity at the pseudothreshold.
Consequently, (39) will reduce to 0=0. Furthermore,
at the normal threshold y& ——0 in (36), so that the three

4'L. Stodolsky and J. J. Sakurai, Phys. Rev. Letters 11, 90
(1963);L. Stodolsky, Phys. Rev. 134, 81099 (1964).

The example of pion exchange (J~=O ) in the t-channel
process XA —&prp (st+sp ——2, s,+s4=1) has been dis-
cussed by Frautschi and Jones. '4

A well-known model of the process +m' —+ Nh is that
of vector-meson exchange in perturbation theory. The
V/A vertex involves three coupling constants or vertex
form factors G», G2, and G3."A simple computation
shows that for this model the invariant amplitudes in
(41) are

gGl gGp (s—44)

mv' —t 2(mv' —t) (mp+m4)'

2gG2

nonzero amplitudes are proportional. The derivative
relation (40) will hold in the degenerate form of its
right-hand side equal to zero. The left-hand. side of (40)
now actually represents the less singular amplitudes
themselves, rather tham their derivatives, and its
vanishing is the only relation remaining among the
three amplitudes at the pseudothreshold when 8»=0.
A model with 8»——0 identically contains the Stodolsky-
Sakurai model as a special case, but is considerably
more general. An even less restrictive variant is a
model in which 8» vanishes only at the pseudothreshold.
All the remarks of this paragraph still apply, with only
slight modification.

The two examples just discussed illustrate causes of
less singular behavior at thresholds than standard,
with its consequences of failure or modification of the
threshold relations. The avoidance of constraints such
as (39) and (40) can have important consequences in
the nearby s-channel physical region. It is well known
that the Stodolsky-Sakurai amplitudes [Eq. (43)$ give
density matrix elements for the 6 decay of the form
p4;=s, p1 1=VS/8, p41=0. The constraint equation
(38), with its equivalence to 7=2 exchange, gives a
quite diGerent set of density matrix elements. Ke
discuss this point further in Sec. V B.

D. s-Channel Threshold Relations for ~N~ ~' d

The singularity structure of the s-channel amplitudes
and the relations between them at the thresholds can
be treated analogously to the t-channel amplitudes.
The example of mN —+EY is given in Appendix B 5.
Because of the presence of spin in both initial and Anal
state and the occurrence of both parity sequences it is
convenient to use parity-conserving amplitudes" as
discussed in Sec. IID. To avoid confusion with the
previous sections on the t channel, we redefine the
masses and helicity labels as follows: m =p, , m =p',
m~ ——m, mq ——m', and X~——X, P ~ ——V. The helicity ampli-
tudes in the s channel are denoted by g&. .z, while the
parity-conserving amplitudes (15) are written as
Fl, , l,"(s,s,). The initial and final center-of-mass
momenta are p, and p, ', respectively. We assume gs) 0.

Ke need only consider the four amplitudes with
helicity indices ) = ~, —

2 and X'= ~, ~. The inverse of
(15) gives these amplitudes as

1
g1;1=—cos—8, (F1;, +F,;1+),

V2

g:; &= »ns8 -(F;;—: —F&:1+)

1.

g1., 4=—cos-', 8, sin8, (F4 , 1 +F1,4+), . .
v2

gt; 4=—slns8, Slll8, (F1;1 —F1,4+).
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The kinematic singularities can bc read o6 from Eqs.
(26) and (28). The results are, assuming Ig(tl, Ig'&m',

F„.1 = A1;, ($,1),
(v'~) p'

Ag, 1 (s,]),
s)

F;;;+=2p,sly,.1+(s,t),

F~,r=2p.p. ~1::-(,1),

where thc A s Rrc Rll frcc of kinematic slngulRrltlcs.
Tile amplitudes (44) ca11 tlllls be wilt'te11 wl'tll tllell'

singularity structure exhibited explicitly:

1
~

1 — p
gg»= —i~o~*-'g ) 4:g + --,&g:g'),

v2 gs p, '

— p
g;, :=—

(sining. ) Ai, g
——Ai:~+),

V2 gs P,'

p.
gg,.*.=—(t:oa'-, g.) Ai;: + -A;;:+),

~2 s P.'

v'~ p
gi., *.=—gain-', g.) AL'. ——», ::+).

v2 s pg'

The remaining half-angle factors Rppea»ng In (46), as
compared with (25), for example, are a consequence of
the half-integral spin in the s channel. The (gs) '
singularity in all four equations is only apparent, . In
the discussion of Sec. III 8 above Eq. (24), it is noted
than sin-,r8, ~ gs near s= 0, while cos-', 8, is well behaved.
Thus the factor of (gs) ' in the second and fourth
cquatlons compensates fol thc bdlavlol of slng86. But
in the first and third, the functions 3 and 2+ are
related at s=0 in such a way as to remove the square-
root in6nity, just as in Eq. (314) for the example
of xS—+EY.

Some of the threshold relations can be obtained by
inspection of (46). At both normal and pseudothresholds
for the rrS channel (p, -+ 0, p, 'NO) only the A terms
survive. Thus, in the limits s = (m+Ig)' and s= (m —Ig)s,

g1,.;/cos-', e.=gt., 1/SIn-', 0„
gg t/coss9, = gg g/slnÃg.

Similarly, at the thresholds,

s= (m'+II')' and s= (m' —Ig')',

(47)

(48)

gg;g/COSsgg= —gg; g/Slns8g g

gt 1/Cosstt, =—g, 1/SInz0

the A.+ terms dominate, and the amplitudes are related
Rs follows:

(49)

or (51)
A1.,1+=VSL2 (Qs)p,p.'s.jan)., 1+.

The two relations, (49) and (50), can thus be combined,

As

cosy 8g

A-4 A'k
-=VS cot8,

sing Hg cos~8,
A;-&= -VS cot&, , (52)

sing 8@

at the Ir'd thresholds s = (m'+p, ')'.

E. Invariant Amplitudes in the 8-Channel

It is by now obvious that. the relations of the previous
section will all appear automatically when the ampli-
tudes are expressed in terms of the invariant amplitudes
g4lg g4sg Brg Bs of Eq. (41). Fol coIllpleteIless we list
the s-channel analogs of (42), or rather, the invariant-

"T.L.Truemsn, Phys. Rev. Letters 17, 1198 (1966),Ref, 7,

The relations (47)-(50) are akin to those obtained by
Jonesrr and Truemangs for mEs. cattering [see (8.15)).
They allow the creation of linear combinations of
amplitudes with more rapidly convergent asymptotic
behavior for gs —+~.

The question now arises as to whether there are more
threshold relations. In particular, can the relations
involving X'= ss, (48) and (50), be connected to their
counterparts, (47) and (49), with X'=-,"? The answer
Is tllR't (49) Rnd (50) caI1 be related, but (47) RIIcl (48)
cannot. To demonstrate this we use arguments on
orbital angular momentum. Consider the partial-wave
expansion (17) for FI,I» and a Russell-Saunders
expansion similar to (30) for FI;,I,~&. Now there will be
an expansion over I., 5 and over I', 8'. Actually, 8
and 5' are 6xed at 5= ~~, 5'= ~3, and only one I value
occurs for each J. But I' takes on two values. For
11=+1, We haVe L= /+Is, I-'=J s, J+—Is, and fOr

11=—1, L=J——',, L'= J ,', J+ss-. —

At the Iran thresholds (p, ~ 0, p, '&0), evidently the
g= —j. sequence dominates because it has the smaller
L value, but both I.' values will be present. This means
that the dependence on initial-state hclicity is deter-
mined, as in (47) and. (48), but the different 6nal-state
helicities cannot be connected. A development parallel
to that from (30) to (36) gives explicit demonstration
of the fact.

At the x'6 thresholds, on the other hand, only the
smallest L' value, namely I.'=J ss in the —g1=+1
sequence, survives. YVC now have only one I and one I.'
CGective in the partial-wave expansion. All four helicity
amplitudes are related. The derivation of the connec-
tions is exactly as in Sec. IV A, with the leading powers
in 2:, of e~„~+ being given in Appendix A, by Eqs.
(A12) and (A13) and the Clebsch-Gordan coefficients
by (A14) and (A15).The result is that, for s —+(m'& p')',

F;,',+=v3'S,F1,g+.
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amplitude equivalents of (45):

2E'
Pyy+ ., P(=, g

—+ P; g—+ +1)s,—t3 &3 '& m'

4 E'+m' 'i' (gs) p,p, '

%3 E+m m'

2p, 'E

m p 1

1

Ai+Bz Qs—
2

1 1 2E'
Pg, g

= P),
—+—+ PP, ; ——1)s.—

V3 v3 m'

4 E+m '" (Qs)p,"
&3 E'+m' m. '

I

X &i—&i gs+
2

2p. 'E

m pp

E'+m' '":=-:(,, )
m' —m

X &i+&z+(&i+~z) V's—
2

m' —m
X &i+&z—(%+~z) Qs+

2

Inspection, of these expressions shows that (a) the
singularity structure of (45) is present, and (b) that
the threshold relation (51) emerges as p,

'
P 0.

F. General Remarks

The examples of zrE —Pzr'6 and zrX —&XI' (Ap-
pendix B) in both the t and s channels illustrate the
methods of determining the kinematic-threshold re-
lations, if any, between the various helicity amplitudes.
The general pattern of how many relations exist at a
given threshold is also evident. We summarize the
general situation in a list of comments to follow. For
simplicity we will speak of the relations between
amplitudes at the thresholds in the initial state. But
the words initial and final can be interchanged. The
notation is that of Fig. 2, with initial orbital angular
momentum L and final, L', etc. Unequal masses are
assumed unless otherwise stated.

(1) For the initial and final states, determine the
allowed values of channel spin S and S'.

(2) For given g, determine the allowed values of
L and L' with the intrinsic parities appropriate to the

threshold in question. The kinematic singularities at
that threshold are given by (26) with the "mismatch"
exponents found from the smallest values of L and L'.

(3) At the initial-state threshold, consider only the
minimum L sequence. This will correspond to one of the
values of g. If the minimum L can occur for only one
value of channel spin, S, the various helicity amplitudes
with definite final helicity, but different initial helicities,
are related. Examples are the s-channel amplitudes for
zrE —P zr'6 at the zrlV thresholds, as shown in (47)
and (48), and zrzr' —+Eh at the gh pseudothreshold,
as given by (38) or (39).

(4) The minimum L sequence may occur for two S
values, namely S=si+sz and S=s,+sz—1. Then the
amplitudes with different initial helicities (but fixed
final helicity) are given in terms of two independent
functions. An example is xx' —+Eh at the normal
threshold, as shown in (36). Note that, no matter how
many different channel spins there are, no more than
the largest and next to largest contribute to the mini-
mum L or L' sequence. Hence the dependence at
threshold involves no more than two undetermined.
functions for each set of the final helicity values.

(5) For unequal masses, the final state is not at
threshold when the initial state is. This means that all
possible L' and S' combinations can occur, and while
amplitudes of different initial helicity may be related,
there will be no connections for different final helicities.
An example is zrS —+ zr'6 at the zrX thresholds, (47)
and (48), where the final helicities V= 2 and li'= z3 are
unrelated. .

(6) If the final channel happens to have only one
L', S' combinat'ion, then the dependence on that
helicity index is also determined. This occurs trivially
for x+' —+/A, but less trivially for ~X—+ z'6 at the
zr'6 thresholds, as exhibited in (52).

(7) For masses such that the initial- and final-state
thresholds occur at the same energy, the threshold
behavior in both channels must be considered simul-
taneously. This normally occurs only if the particles
are the same in the initial and final states. Roughly
speaking, one then gets the square of the formulas
discussed here. For example, in the t-channel process
EZ ~Eh (corresponding to pp —& ZA in the s channel),
the relation between the various helicity amplitudes
with g=+1 at

they'd

(=EX) pseudothreshold has the
appearance of (38), but with another Clebsch-Gordan
coeKcient for the initial-state helicities, and dq„,
instead of d0„2. In ~S~ m.E, the merging of the
thresholds gives (B15) as the relation at the normal
threshold and pseudothresholds.

(8) To determine the nonderivative threshold re-
lations explicitly, consider the partial-wave expansion
(17) with the F~ given by keeping only the lowest
allowed L or L' value in the Russell-Saunders expansion.
Then use the leading powers of z in ei,„s+ Lgiven by
(A12) and (A13)) in combination with the Clebsch-
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Gordan coefficients
I see (A14) and (A15)$ to separate

the sum over J values from the helicities and a possible
sum over channel spin.

(9) The existence of derivative relations can be
established by considering how' the higher I- values
enter successively in an expansion of the amplitude in
powers of T'. There are as many Russell-Saunders
combinations of (I.,S) and (L',S') for each J as there
are independent helicity amplitudes. The nonderivative
relations occur because not all (L,S) combinations
contribute to zeroth order in T'. For each higher power
of T more I. values contribute. But if not all possible
values of (L,S) occur, there will be as many relations
among the successive derivatives of the amplitudes as
there are noncontributing (L,S) combinations at each
stage. Eventually, of course, all (L,S) values will enter
and no further relations can emerge. Equation (40)
is an example of a 6rst-derivative relation for mm' —+X~
at the XA pseudothreshold. Its derivation is given in
Appendix C.

V. CROSS SECTIONS AND DECAY
DENSITY MATRICES

The t-channel kinematic singularities and the as-
sociated threshold relations among amplitudes have an
important inhuence on the structure of the differential
cross section and decay density matrices for peripheral
processes in the s channel. For the s-channel process
a+ b ~ c+d, the differential cross section is

do 1 1
ZIg~.~,;~.x, I', (54)

dt 64rsPP (2s,+1)(2s~+1) "

where gq, q, q,qb are the s-channel helicity amplitudes. '4

The orthogonality of the crossing matrix for helicity
amplitudes allows the replacement in (54),

where fq,~,,~,q, are the t-channel amplitudes. Now the
s-channel cross section is expressed directly in terms of
the sum of the absolute squares of the analytic continua-
tions of the t-channel helicity amplitudes. 7 44 Similarly,
the decay density matrix of one of the outgoing particles
in the s channel, say c, takes the form

(56)

provided the quantization axis is chosen as the mo-
mentum transfer direction in the rest frame of c.44 The
direct use of t-channel amplitudes has obvious ad-
vantages in the treatment of peripheral processes.

A. Absence of t-Channel Kinematic Singularities
in the Cross Section

The 6rst obvious requirement in using t-channel
amplitudes is to incorporate the proper kinematic-
singularity structure, as given by (26) and (28). This
is done automatically in perturbation theory or with
the use of invariant amplitudes. But in Regge-pole
models with helicity amplitudes the requirements must
be consciously imposed. If the kinematic-singularity
structure, but not the threshold relations, are imposed,
the resulting cross-section expressions contain explicit
polelike factors of the form

I
t (m,+—m.)'I-'. From (25)

it is clear that the phenomenological expression for the
differential cross section for mg ~ z'0 will then have
the form

da
S(s,1), (57)

dt
I (mq+m~)' 1

I I (m& m&)'

where S(s,1) is well behaved in 1 Aco.llection of Regge-
pole formulas for a large class of reactions, showing
explicit kinematic singularities of this type, have been
givenby Wang, ' andhavebeen used by some authors" '4

in empirical 6ts to experimental data. Similarly the
standard formulas used to describe high-energy pion-
nucleon charge exchange" have an over-all t-channel
kinematic-singularity factor (4m' t) '. A sing—ularity
like (4m' —t) ' is so far away from the s-channel
physical region that its presence or absence is of no
practical consequence. But for processes like xE~ m'6

the factors exhibited in (57) almost completely deter-
mine the t dependence at small t.

The presence of these t-channel kinematic singu-
larities in the physical cross section for the s channel is
not consistent with the known singularity structure of
the s-channel amplitudes. This point has been stressed

by Lin," with emphasis on t=0, and by Stack."
Consider the expression (54) for the differential cross
section. The s-channel amplitudes gq possess s-channel
kinematic singularities at s= (m, &mq)2, (m, &my)' and
singularities in t on the boundary of the physical
region, ' "but do not have singularities at the t-channel
thresholds t=(m, &m,)', (m~&m~)' Thus t. he cross
section (54) cannot possess the polelike factors in t

shown in (57) and all of the formulas of Ref. 12. The
only t-channel singularities allowed in

I gq I' are dynamic
ones (for example, poles corresponding to exchanged
particles) whose locations do not depend on the external
masses.

The puzzle or inconsistency here can be phrased
as follows: The gq have no t-channel kinematic singu-
larities; the fq do have them. Is the replacement (55)
allowed, and if it is, how can we avoid obtaining a cross
section possessing the impermissible polelike factors, as

~K. Gottfried and J. D. Jackson, Nuovo Cimento B3, 309
(1964).

4~ G. Hohler, J. Baacke, and G. Eisenbeiss, Phys. Letters 22,
203 (1966).
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vi(t)
f++; pp = R (s,t) ~

(t—4m')»'

n(t)yp(t) (Qt) sin8,
;00 R(s,t),

(t—4m')'" 2m cos8i

(5g)

where R(s, t) is the usual Regge-pole amplitude for
spinless particles [Eq. (DS)j, n(t) is the p-meson tra-
jectory, and. y;(t) is a reduced residue function, free
of all kinematic singularities. In forming the absolute
square of f+, pp care must be taken in the interpretation
of (gt) sin8i/cos8i. As mentioned below (39), it is
given meaning through the expression (gt) sin8i/cos8i
=2(gy)/(s —I). According to (54) and (55) the

in (57) P The first part of the question has a positive
answer. The equality of the left-hand and right-hand
sides of (55) is assured by the fact that the crossing
matrix is a real orthogonal matrix in the physical s
channel. Thus, as long as we stay in the physical region
of s, the use of (55) is allowed. But, as emphasized,
by Lin," the equality of the two sides of (55) does
not hold outside the physical region where the crossing
angles become complex and have singularities. In
particular, near the t-channel thresholds the right-hand
side of (55) has the singularities discussed in Sec. III,
but the left-hand side is well behaved. The second part
of the question, how to avoid obtaining expressions
like (57), has a subtler answer. We have seen in Sec. IV
that when amplitudes have kinematic singularities there
are always accompanying threshold relations among the
amplitudes of different helicity. The explicit satisfaction
of these threshold. constraints among the fx will always
eliminate the kinematic singularities from the right-
hand side of (55), when it is epallated i' the physical
region of s When t.he sum of the absolute squares of the
fi, is computed in the unphysical region, it will contain,
of course, the threshold kinematic singularities, since
each t-channel amplitude possesses them and no
cancellation can occur in a sum of absolute squares.

To see how the singularities are cancelled in the
physical region in the s channel, but not outside it,
we discuss the somewhat academic example of pion-
nucleon charge exchange where the amplitudes are
singular as (t—4m') 't' at the normal Eg threshold.
This singularity is not important at small t, but the
principle involved in its removal from the cross section
is the same as for more practical examples such as
mN~xh, and the details are simpler. We use the
Regge-pole model with the exchange of a p-meson
trajectory as the framework, although the method has
wider applicability. The kinematic singularities and
threshold relations for x~ —+NN are 'treated in Ap-
pendix B. The two t-channel amplitudes are given by
(32). With the standard Regge pole assumptions (see
Appendix D), the amplitudes can be written as

differential cross section is

a(t)Vp(t)

vi(t) i=4 '
(60)

To see how this condition removes the polelike factor
(4m' —t) ' in (59), we write, for arbitrary t,

~(t)y, (t) =q, (t)+((t) (4mP —t)/4m' (61)

where $(t) is not infinite at t=4m', and is well behaved
and real for t &4m'. The threshold condition (60) is now
satisfied, but the cross section still involves two arbi-
trary residue functions, yi(t) and g(t). Substitution of
(61) into (59) yields

do. lR(s, t) l'

dt 64m spp

1
x ~ip — 27i(+Pl 1— (62)

4m' 4m' 4mp

We note that the threshold singularity has been
cancelled out by the imposition of the threshold.
constraint (60). The cross section has the proper be-
havior in t, as required by (54).

There only remains one further remark. In the
unphysical region where t&0, the sum of the absolute
squares of the amplitudes (58) is proportional to the
square bracket in (59), but with a plus sign between
the two terms. Then substitution of (61) does not
result in a common factor of (4m' —t); the right-hand
side of (55) now possesses the known kinematic singu-
laxity. The discontinuous behavior as the line t=0 is
crossed is not surprising. The absolute squares of
analytic functions need not be analytic.

B. Cross Section and Decay Correlations for
~N —+ ~'4

The example of charge-exchange scattering is not
very exciting because the normal gE threshold is so
far away from the region of interest. Empirical sting
with (59) or (62) will lead to substantially the same
results, even though (59) is incorrect in principle. But
for our favorite reaction, gN —+~A, the differences

do lR(s t) l' 1 t—yi'(t)- ~'(tb"(t) . (59)
dt 64m sp, ' 4m' —t 4m'

In writing (59) it has been assumed that t &0, that a(t),
yi(t), and yp(t) are real, and that lcos8,

l
lsin8il))1.

This is the standard Regge-pole formula of Hohler" and
others. y& and y2 are assumed to be arbitrary empirical
functions of t, to be determined by 6t.ting the data.

But we know that p& and p2 are not completely
arbitrary. The amplitudes must satisfy (35) at t= 4m'.
In terms of the residue functions this requirement is
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Fzo. 4. Density matrix elements p ' for the decay of the b, in
the process 4'-4 4ra, assuming that the threshold relations (39)
and (40) hold at the Nb, pseudothreshold, 5=0.09 (GeV/c)', and
that the residue functions are not rapidly varying in t I see text
below Eqs. (64) and (65)J. The dashed lines are the predictions
of the magnetic-dipole coupling model of Stodolsky and Sakurai.

Then the residues at the normal threshold are nq(t)
and those at the pseudothreshold are pq(t). The various
relations are then demanded of Nq and pq, respectively.
Away from the thresholds, rsvp and pq are, of course,
arbitrary. But in practice, a smooth functional depend-
ence can be assumed. In verifying the cancellation of
the kinematic singularities in the cross section it is
suKcient to assume I&, and pq are constant. Functional
dependence on t can then be envisioned in terms
of Taylor-series expansions around the respective
thresholds.

If there are relations among derivatives, as well as
the amplitudes, obvious generalizations to the para-
metrization are necessary, with attendant complications
in the algebra. For the example of mE ~ ~h, we will

simplify matters by ignoring the normal NA threshold
at t=4.72 (GeV/c)'. Then the conditions (39) and (40)
at the XA pseudothreshold, can be satisfied by a
parametrization of the form

&.x4. oo= px»4(t)
TN'T p' (rr —t4) I

(gt) sintj4 &

X R(s,t), (63)
M cos8g

where p=X3—X4, and M is a mass parameter inserted
to make all the residues have the same dimensions. It
is conveniently chosen to be the pseudothreshold mass
M=m3 —m4. The threshold conditions then become
relations among the residue functions at t= (ms+m4)'.
To demonstrate the cancellation of the singularities it is
necessary to parametrize the residue functions so that
the threshold relations are exhibited explicitly. For
relations at both thresholds, but no derivative relations,
an obvious parametrization is

t (m, —m4)'-—
q&(t) = n&, (t) p~(t)

4msm4

t (ms+ m4)'—
4m3m4

between the formulas of Wang, "as used by Krammer
and Maor,"and the correct expressions are enormous.
The EA pseudothreshold is at t= 0 09 (GeV/. c)'.Thus the
cross-section formula (57) appears to have a dynamic
pole corresponding to the exchange of a particle of
mass 300 MeV, far lighter than the p meson presumed
to be the dominant exchange. This sharply peaked
factor governs the small-t behavior and requires a zero
in the function S(s,t) between t= 0.09 and the physical
region t&0 in order to fit the experimental data.

The threshold relations (36), (39), and. (40) are
required in order to remove the spurious t-channel
polelike factors from (57). Within a Regge-pole frame-
work we write the t-channel amplitudes as (see Ap-
pendix D)

t—t„
ys—=upi, I= —v3u+bs

(t—' l
q s

—=oyII= o+bsl ( t

(64)

t—t,~
V4—=o(~—&)V~.-I= —&+b4

t, J

where the derivative relation (40) requires

V3(bt+bs) —(bs+b4) = a (65)

at t=ts=(ms —m4)'=0. 09 (GeV/c)'. Apart from the
condition (65) at t=tp, the well-behaved functions
44(t), bt(t), bs(t), bs(t), and b4(t) are arbitrary, in the
absence of dynamical information. But it is reasonable
to hope that they are relatively slowly varying in t, at
least for physical t values in the range

~
t

~

&3t„.
One simple, plausible choice for the residues follows

from the presence of a factor of rr(t) in q s, ys, and y4 in
(64): With the assumption of a linear trajectory, the
parameters a and b; are chosen as constants, and the
residues ys, ys, and y4 are made proportional to cr(t)
This fixes b~, b3, and b4 relative to a. Then, the slope
parameter b~ is determined by the derivative relation
(65). Assuming that the p-meson trajectory vanishes
at t —0.6 (GeV/c)', the nonflip residue function
yr(t) goes from +%3 (in some units) at t=0 09, to zero.
at t~—0.1, and down to —4.5 at t —0.6, while the
other three residues, qs, ys, and q 4, change from —K3,
+1, and —1, respectively, to zero in the same interval
of t.

The density matrix describing the decay of the 6
can be written, apart from a very small region of t
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at 8 ~0', as

Ep;i=yr'+ (6'/t„)y2',

~.«= (~r/4)V*a+(~2/4)2V",

Ep), )= (6'/t, ) (ygya yry4—),
Epg. y= (a'/t. )'"prya+(6'/t. )ymy4$,

where

~=2Lyt2+ (~2/fy)(ym'+yP)+(Le/t )'/4'

(66)

46 M. Abolins, D. D. Carmony, D.-¹Hoa, R. L. Lander, C.
RindQeisch, and ¹-H.Xuong, Phys. Rev. 186, 3195 (1964).

47 Aachen-Berlin-Birmingham-Bonn-Hamburg-London (I.C.)-
MQnchen Collaboration, Nuovo Cimento 34, 495 (1964).

4 Aachen-Berlin-CERN Collaboration, Phys. Letters 22, 533
(1966); see also Ref. 13.

and dP= t. In—writing (66) it has been assumed that
the residues are real and that all the amplitudes have
the same phase. The linear residues of the previous
paragraph lead to the density matrix elements shown
in Fig. 4. Upon comparison with experiment we 6nd,
that these predictions are almost as far from the facts
as they could be. The data on m+p-+ "6++ at 3.54
GeV/c, ' 4.0 GeV/c, r and 8.0 GeV/c 4a are all more or
less in agreement with the Stodolsky-Sakurai model
prediction~ of pter=0. 375, p1, ~=VS/8=0. 217, and
pgy=0, shown as dashed lines in Fig. 4. The most
disagreeable feature of the results shown in Fig. 4 is the
negative value of p~ ~. This can be blamed in large
measure on the ratio ya/yr ———1/V3 at t= t~, in contrast
to the magnetic-dipole model's ratio of +VS, as given
in Eq. (43). Other simple choices for the residue func-
tions, e.g., making p& constant, allowing only linear
behavior for y~ and. y3, and imposing the magnetic
dipole coupling LEq. (43)j at ~=m, ', give results quali-
tatively similar to those shown in Fig. 4, with pg, g&0
and. p~y)0 and. of the same order of magnitude. The
situation can of course be remedied within the frame-
work of (64) with a~0, by choosing suKciently rapidly
varying functions a(t) and b;(t). Hut the threshold
constraints at t=t„are a severe hindrance, rather than
a help, in obtaining a Gt to experiment.

The experimental d.ata on m+p —& x'6++ imply that
the dynamics are such that the threshold constraints
are not applicable, as discussed in Sec. IV C. If the
amplitudes are 6nite at t=t~, rather than behaving as
(t t~) ', i.e., a=Oin —(64), then the only relation among
the residues is (65) with the right-hand side equal to
zero. Clearly there is now a tremendous amount of
freedom, even with relatively slowly varying residue
functions. The choice yt ——0=y4 and yr(t) =%3ye(t) of
the magnetic dipole coupling model, is one of the
possibilities that seems consistent with the decay corre-
lation data. The differential cross sections at 3.54 and
4.0 GeV/c give further evidence of something close to
the Stodolsky-Sakurai coupling. They show a dip in the
forward direction consistent with a small value of the
nonAip amplitude fear and also are consistent with a
dip in the cross section at t 0 6GeV/c—, as. expected

from the factors of n(t) in ye and. ye. The 8-GeV/c data
seem to show departures from the M1 coupling model,
but still imply less than the standard singularity:
behavior at t= t„.The density matrix elements quoted
by Krammer and Maor" have a t dependence that
indicates the presence of ft; Th. e di8erential-cross-
section shape" is consistent with this, having a definitely
nonzero value in the forward direction. In spite of these
differences from the lower-energy data (differences that
may be hard to explain within the Regge-pole model),
the 8-GeV/c results are far from agreeing with the
curves shown in Fig. 4. Thus all the experimental data
support the idea that the t-channel dynamics are such
that the pseudothreshold constraints $Eq. (39)] are
circumvented" by having less than standard singu-

larity behavior. Within the framework of the Regge-
pole model, the only alternative is to have what seem
to be unreasonably violent t dependences of the resid. ue
functions.

Independently of whether or not the dynamics
chooses to make empty the threshold relations, the
cross-section formulas used to make empirical Gts to
the data must be free of the pole-type singularities of
(57). The work of Krammer and Maor on mlV —+m~ra

and EE~EA, 50 and of Krammer on +E—+ gb, "must
be reconsidered. Because of the experimental density
matrix elements for all these reactions, they were led
to empirical residues of roughly the M1 variety for
both the p and A~ trajectories. But the t dependence
of their residues and the fits to the differential cross
sections are in error because of the use of Wang's
formulas "

C. Other Reactions

The general behavior discussed in Secs. V A and V 8
holds true for other reactions as well. An example of.
interest is the process xN —+ pd, discussed by Frautschi:
and Jones'4 with a Regge-pole model of pion exchange. .

The thresholds of most significance are the mp threshold.
at t 0.38 (GeV/c)' and the Ã', pseudothreshold at
t= 0.09 (GeV/c)'. For natural parity exchanges (&=+1)
the threshold kinematic singularities are the same as for
xE —+ x'h. For pion exchange and others with g= —1,
the threshold singularities are (T~T~TN"T p') ', where

primes refer to the E~ channeL Frautschi and Jones
keep only the nonQip (X=O, @=0) amplitude near t=0,
but have the kinematic singularity factors in the cross
section. They discuss three models: (1) constant
residue, (2) elementary pion exchange, and. (3) linear
residue. The 6rst model gives an unreasonably peaked
cross section in the forward direction because of the
polelike factors in t. The elementary pion-exchange
model, a dynamical exception in the sense of Sec.
IV C, gives amplitudes vanishing at the thresholds

4' Evaded is a very appropriate word here, but "evasion" has
been pre-exempted for behavior at t =0.

'0 M. Krammer and U. Maor, Nnovo Cimento 52k, 308 (1967).
'~ M. Krammer, Nuovo Cimento 52A, 931 (1967).
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kinematic singularities included, but without strict
attention to the threshold relations among the ampli-
tudes. Kith pionic Regge exchange it may well be
necessary to have a relatively complicated para-
metrization of the residues, satisfying the elementary
pion-exchange requirements at the pion pole, as weQ

as the threshold relations among the amplitudes at the
pseudothresholds, at least. In questions of conspiracy
and the detailed behavior of cross sections at small t

values it is essential to handle all aspects of the nearby
t-channel thresholds correctly. Otherwise, erroneous
inferences may be drawn about presumed dynamics.

VL SUMMARY AND CONCLUSIONS

The analytic structure of helicity amplitudes for
two-body processes near kinematic thresholds has been
discussed without recourse to the crossing matrix. The
tools are those of nonrelativistic quantum mechanics,
e.g., channel spin S and Russell-Saunders coupling of
L+S=J, as beats a situation where p-+0, with the
standard. partial-wave threshold behavior [Kq. (20)].
The kinematic singularities of the helicity amplitudes
are shown to follow from a mismatch between J and I
for each term in the partial-wave series. There can be
no question about the applicability of these methods,
including use of (20), at the normal thresholds in each

channel. The behavior of the amplitudes at pseudo-
thresholds can also be discussed within this framework,

provided changes are made in the formal assignments

of parities and phase factors, as described in Sec. II K.
Implicit here are the assumptions of Lorentz invariance

and analyticity, in common with the approaches using

the crossing matrix. The general result for the kinematic-

singularity structure is contained. in Eqs. (26) and (28).
Going along with the singularities of the helicity

amplitudes at the normal thresholds and pseudo-

thresholds are relations among the amplitudes and

perhaps their derivatives with respect to the channel

energy. These relations can be understood as occurring

because only the lowest I. value for each J survives at
threshold; the Russell-Saunders amplitudes corre-

sponding to higher I.values vanish as higher powers of
the momentum. If the number of Russell-Saunders

amplitudes contributing at threshold for each J is less

than the number of independent helicity amplitudes,

there will be relations among the helicity amplitudes.

Similarly, if, to Grst order in the energy above threshold

(i.e., to next order in p'), there are still more helicity

amplitudes than there are different Russell-Saunders

amplitudes, there will be relations among the first

derivatives, and so on. The explicit construction of the
relations among the amplitudes for m-E-+ x'6 in the t

and s channels is presented in Secs. IV A and IVD,
respectively. The simpler process, mE —+ KI, is treated
in Appendix B.

For comparison, the helicity amplitudes are expressed
in terms of invariant amplitudes and it is shown that
their usea utomatically incorporates both the kinematic

as the reciprocal of the standard threshold behavior.
This t dependence in the numerator of the amplitude
rather than the denominator gives an unacceptably
large and broad differential cross section. In their third
model Frautschi and Jones argue that for a pionic
Regge trajectory the proximity of the pion pole at
t=0.02 (GeV/c)' and the Eld pseudothreshold at
t =0.09 (GeV/c)' means that the residue function should
reflect approximately the exceptional behavior of the
elementary pion at this threshold, while at the other
thresholds n is probably different enough from zero
to eliminate the dynamical exceptions. Thus they
parametrize the residue as y(t)~ (t—b), where b is
expected to be in the neighborhood of the XA pseudo-
threshold. Comparison with data at 4 and 8 GeV/c
shows that b=0.09 (GeV/c)2 gives considerable im-

provement over model (1), but that b~0 is definitely
superior. LeBellac" has used this empirical vanishing
of the nonQip residue function near (=0 as a supporting
link in a chain of argument concerning conspiracy and
the pion trajectory.

Several remarks can be made. The first is that, as
far as the cross section is concerned, a choice of constant
or slowly varying residue functions [model (1) of
Frautschi and Jones) is possible provided all the
amplitudes are kept in the cross section and the various
threshold relations are satisfied explicitly. The kine-
matic-singularity factor in the Frautschi-Jones cross
section decreases by a factor of 10 from the pion pole
to t= —0.2 (GeV/c)'. Once this is removed by cancel-
lation from the numerator, there is no need for residues
which vanish near t=0.

Model (3) had its origins in the idea of a dynamical
exception, with amplitudes having less than the
standard kinematic singularities. The t-channel polelike
factors would not, then appear in the cross section
from the beginning and an acceptable t dependence
might result. But the empirical result of a residue
vanishing at t~0 is at variance with the original
motivation, as is admitted by Frautschi and Jones."
From the present viewpoint the vanishing of the residue
at t=0 is forced by the presence of the improper
t-channel polelike factors in the cross section.

The 6nal remark is that the interpretation of the I

dependence of the cross section for a process like
mX~ pd, at small (—t) values demands considerable
care because of the Gnite widths of the p meson and the
A(1236) resonance. This has been illustrated, by Wolf"
in his discussion of the energy and t dependence of this
reaction. If the events are plotted versus cos8, instead
of t, or equivalently, versus [ 3 (—t) j, wher—e-
(—t); is the minimum kinematically allowed value
of —t for each event, there is little or no evidence of a
turnover in the cross section at small t values.

The above example illustrates some of the dangers
of application of Regge-pole formulas with the correct

~~ M. LeBellac, Phys. Letters 2SB, 524 (1967).
~ G. Wolf, Phys. Rev. Letters 19, 925 {1967).
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singularity structure and the accompanying relations
among the amplitud, es at the thresholds, only provtded
we assume that the invariant amplitudes have nothing
but dynamic singularities. The use of invariant ampli-
tudes for both s- and t-channel processes is illustrated
for m S~EF and m E~ x'h.

An important aspect of the threshold relations is the
possibility of dynamical exceptions. For dynamical
reasons the amplitudes may be less singular at one or
more thresholds than expected. from the standard
formulas (26) and (28). Absence of one or more values
of channel spin is one reason for such behavior. In
perturbation theory the limitation of J values to less
than the maximum channel spin is another (see Sec.
IV C). In such circumstances, the threshold relations
among the amplitudes reduce to zero equals zero,
while relations among the derivatives may or may not
exist in modi6ed form, depending on the degree of
departure from the standard. singularity behavior and
other details. The reaction ~Ã —+ mA is an example of
a process which very likely avoids the imposition of
threshold relations on its amplitudes at the Nh pseudo-
threshold, 1=0.09 (GeV/c) . This is discussed in detail
in Secs. IV C and V B.

The use of t-channel helicity amplitudes in the
expression for the s-channel cross section is standard
in all models of peripheral process at high energies for
obvious reasons. The replacement, (55), is justified
in the physical s channel by the orthogonality of the
crossing matrix. ' ' Since the t-channel helicity ampli-
tudes in general possess kinematic singularities of the
inverse-square-root type at t-channel thresholds which
may lie close to the physical s channel, one is led to
explicit exhibition of such kinematic factors in the
s-channel diGerential cross section. '~'4 Qn general
grounds it is known that such t-channel kinematic
factors cannot occur in the s-channel cross section.""
Explicit satisfaction of the various threshold relations
among the amplitudes is suQicient to cancel all the
t-channel polelike factors, provided. the variables (s,t)
lie in the physical region of the s channel. The academic
example of s p-+s'e with Regge-pole exchange is
discussed in Sec. V A to illustrate this point. The more
significant reaction, ~E -+ s A, with its highly singular
behavior at the Nh pseudothreshold, is treated in
detail in Sec. V B with special emphasis on the density
matrix of the 6, It is shown that the requirements on
the amplitudes at the pseudothreshold, while removing
the spurious second-order pole at 1=0.09 (GeV/c)'
in the cross section, tend to give decay correlations of
the 6 in sharp disagreement with experiment. Apart
from the possibility of unpalatably rapid variations
in t for the residue functions, experiment thus indicates
that the amplitudes for this process are less singular
than expected at the thresholds. This, of course, is
another way of eliminating the t-channel polelike factors
in the s-channel cross section. It leaves only one relation
among the four helicity amplitudes at the /6 pseudo-

threshold and. encompasses a large class of models,
including the magnetic-d. ipole coupling vrhich gives
decay correlations more or less in agreement with
existing data.

The results obtained concerning the kinematic singu-
larities of two-body helicity amp1itudes are not new.
But it is believed that the derivation of the singularity
structure at threshold by means of nonrelativistic
quantum-mechanical principles appropriate to that
threshold. , and without recourse to the crossing matrix,
is simpler and more transparent than the other meth-
ods, ~" as well as being an aid. to the physical under-
standing of these singularities. Similarly, the existence
of relations among the diGerent helicity amplitudes at
thresholds has been discussed. by others. ~ ~ But
again, the same framework of nonrelativistic quantum
theory yields in a straightforward. way the threshold
relatioos without resort to elaborate relativistic formal-
ism. The two most important points, for applications
at least, are (1) the nonexistence of kinematic-singu-
larity factors in the cross sections, a result that can be
assured provided. the threshold relations are imposed
in the parametrization of any model, and (2) the possi-
bility of avoidance of the requirements at a threshold
by means of some dynamical mechanism which lowers
the degree of the singularity.

One apparent lesson from this work is that helicity
amplitudes are a bad representation, with many
peculiarities and subtleties which must be looked after
with great care. The use of invariant amplitudes or M
functions, with the kinematic structure all exhibited
explicitly, overs a more painless approach. But for
high spins, invariant amplitudes and their attendant
kinematics are not easy to construct. 4 Furthermore,
they do not have simple angular momentum and. parity
properties. Helicity amplitudes will, in all probability,
continue to be used because of their elegant angular
momentum properties and their general applicability
to arbitrary spins.
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APPENDIX A

The Wigner d functions can be written in the follow-
ing form:

(J+p+n)! (J—z)!
X (s—1)', (Ai)

2 (p—X+n)!
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( )
ai(J) =

2~J!(J—1)!LJ(2J—1)j'I'

where s=cos8 and we have assumed X, p~&0 and X~&p. is independent of J. The coefficients in (A6)-(A8) are
Other possibilities for 'A and p, can be obtained from the
symmetries of the d functions (see Ref. 5, for example).
The leading term (highest power of s) is

(sin8)&(cot-,'8)"(2J)!s~ I'

d~.'(8)- (A2)
2'L(J+~) '(J—p)!(J+!~)!(J—!~)'j'"

ap(J) =
2 J!(J—2)!L3(J+1))'IP

(A10)

In the Russell-Saunders expansion (32) and (37)
there occur the angular momentum Clebsch-Gordan
coefficients &LSD~ Jp), with special values L=J 1, —
5= 1, 2 and I.=J—2, S=2. The coeKcients are particu-
lar examples of &abnP

~
(a+b)7) and &abnP

~
(a+b —1)y),

given explicitly by Brink and Satchler. '4 The three
values needed in Sec. IV A are

1
((J-1)10'~J~)=

(J—1) LJ(2J—1)j'"

(J+~)!(J—~)! "'X, (A3)
-(1+v)'(1—~)'-

—2y (2J—3) t3i
&(J-1)20~IJ~)=

(J—2) '-(2J+2) (2J) '-

, L(2J—4)'(2J) 3"'
bp(J) = 2(V'p)

2~J!(J—2)!
(A11)

The specific form of ai(J), ap(J), and bp(J) are of no
real concern, but it is perhaps worthwhile to note that
their asymptotic forms for large J are 2~/(2prJ)'I'
times 1, —1/%3, and 1/V3, respectively.

For the general problem with nonvanishing helicities
in the initial and Gnal states the coefficients of highest
powers of s in eq„~+(s) are needed. From the definitions
in Ref. 26 they are found to be, with the same restric-
tions on X, p as in (A2),

(2J)!s'-~
e „+(s)=

2'UJ+ p) (J—p) '(J+&) '(J—~) lj"'

X 1+0(—), (A12)

eg„-(s)=—X(J—p) (1 )-
e „~+(s) 1+Oi —

i

ks j (A13)

1 (2J—4)!4! 'I'
&(J-2)20'~ Jp) =

(J—-')'- (2J).
The m dependence of the Clebsch-Gordan coeKcients

(LSom
~
Jm) needed in the general case is'4

(J+I )!(J I )!"'— (J+m)!(J—m)! 'I'

X . (A5) ((J—S)Som
~
Jm) = a(J,S), (A14)

-(2+~)!(2—~) '- (S+m)!(S—m)!

The combinations of the leading term (A2) of
di, „~(8,) and the various Clebsch-Gordan coefficients
are conveniently written in the form

((J—1)10'
i Jp)dp& (8i) = ai(J)s idp&i(8i), (A6)

((J—1)20'
i
Jp)dp„~(8,)=pap(J)s~ 'dp '(8i) (A7)

((J—2)20'
I

Jli)dpi'~

(8i) = bp(J)s~ pdp p(8i) . (AS)

Note that Eqs. (A6)—(A8) hold only for the highest
power of 2, namely sJ &, on boths ides of each equa-
tion. The exhibition of dp"e(8i), rather than powers
of 2', serves two purposes. One is to remind the reader
that a particular channel spin S is involved and the
other is to show that all the nontrivial dependence
on the helicity index p is isolated in this d function that

54 D. M. Brink and G. R. Satchler, Angllur Momgnfgm (Oxford
University Press, I ondon, 1962), p. 1H,

((J—S+1)Som
~
Jm)

(J+m)!(J—m)!-'I'
=m b(J,S), (A15)

(S+m)!(S—m)!

&(J S+2)So—m~ Jm) = LS(J+1) m'(2J —2S+3)5—

(J+m)!(J—m)!-"'
X c(J,S) . (A16)

(S+m)!(S—m)!

Evidently, the combination of (A14) or (A15) with

(A12) allows the J dependence to be factored from the
X or p, dependence, as required in the development from
(32) to (35), for example.

APPENDIX B

In this Appendix we consider the relatively simple
process of 0 +-',+ —+ 0 +is+. In order to maintain the
most general kinematics, the s-channel reaction will be
called prX —&XI'. But prÃ or EfI/ elastic scattering
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can be obtained by considering the appropriate limits.
For convenience in writing formulas, the simplified
notation m~ ——p, ', m~= p, , ms=m', m4=m is used where
the ordering corresponds to the t-channel process
Eor + I'—

¹

1. t-Channel ~inematic Singularities

The channel spins are S=O and S'=0, 1 for the
initial and 6nal states. There are thus no kinematic
singularities at the Eor thresholds. Table II shows the
allowed orbital angular momenta at the FS normal
threshold and pseudothreshold for successive J values.
For J&0, the minimum I.' value is seen to be I-'= J—1
(S'= 1 only) at the normal threshold, and L'= J (both
S'=0, 1) at the pseudothreshold. The kinematic singu-
larity at the normal threshold is Lsee Eq. (20), (21), or
(26)] (TN') '. There is no kinematic singularity at the
pseudothreshold. The helicity amplitudes can therefore
be written as

(Q )fX'—Xf

'X;00 A~ «'(s, t),
pt —(m+ m')o]'»

in analogy to (25), with A&, &, (s,t) free of all kinematic
singularities. Explicitly, we have

f++; pp =A++'(s, t)(t—(m+m')' j i",
f , oo=2(gt) pp.

' sine, A+ '(s, t)Pt —(m+rio')'] '"

Note that the first (second) helicity index is for F(E).

TABLE II. Orbital angular momentum values I' at the normal
thresholds and pseudothresholds for the anal state in E"x~F¹

JP

0+
1
2+

3

Normal
S'=0 S'=1

1
0, 2
1$3
2, 4

Pseudo
S'=0+ S'=1+

in (82) this threshold condition becomes

A++'(s, t)

A~'(s, t) o=(~ .)o

= 2(oio+m') pp's

= (m+oio') (s+mm') (m—p"+m'to') (8. 5)

At the pseudothreshold we see from Table II that
both S'=0 and S'=1 contribute. This means that
instead of (83) there will be an expansion involving
tw'o terms for each J, one for each S' value. Use of
counterparts of (A6) and (A7) and summation of the
resulting J series leads to an expression like (35),
involving two independent functions of s. Since there
are only two distinct helicity amplitudes to begin with,
there are no relations at the pseudothreshold.

The structure exhibited in (82), plus the threshold
relation (85), is thus a complete specification of the
restrictions imposed on the t-channel helicity amplitudes
by kinematics alone.

2. t-Channel Threshold Constraints

At threshold the two amplitudes f~+ pp and f+, pp

are related. First consider the normal threshold. From
Table II we see that only channel spin S'= 1 is present
and that I.'= J&1. The Russell-Saunders decomposi-
tion LEq. (30)] of the partial-wave amplitude thus has
two terms. But at threshold only the lowest 1.' value
gives a nonvanishing contribution to Aq q. Furthermore,
the analog of (31) is

FN~(L'= J 1, S'=1)=—(T~')~ '(Tp'T~Tp)~ F~~.

3. Description in Terms of Invariant Amplitudes

The familiar description in terms of invariant ampli-
tudes A, 8 automatically displays the kinematic
singularities and threshold constraints. For the s-
channel process ~N —+ EF the Feynman amplitude is

M = u& (p') t
—A+ip —,'(q+q')Bfu&(p), (86)

where q„(q„') is the 4-momentum of vr(E) and N(p)
(ot(p')) is the Dirac spinor for E (I"). The t-channel
amplitude is

This means that at threshold the helicity amplitude
(81) has the partial-wave expansion

M =Ng. (p') $ A+iv '(q —q)B5vi, (p-)— (87)

where now g„(P„) is the 4-momentum of K(K). The
negative-energy spinor is conveniently written as
v&, (p)= (—1)" '"zoot z(p), where X is the helicity of

&&((J—1)10t
I Jt )~p.'(~i) (83)

Use of Eq. (A6) gives an equation similar to (34).
Within the region of convergence of the partial-wave
sum (a 6nite segment of the line AB in Fig. 3), the
result is

T~ fbi„op=ye(s)(o o & —&I 1 t &(«pp')do '(ei), (84)

where yz(s) is the sum over J. In terms of the Az. z'(s, t)

with I being the 2&(2 unit matrix.
The Jacob-Wick helicity amplitudes are obtained by

evaluating (86) or (87) in the center-of-momentum
frame. For the I, channel, straightforward manipulation
leads to the expression (81) with A++' and A+ '
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given by

A++' ——L(m+m')' —t]A

tm' —m~-
+ ', (m-+m') s I—+(pls , —

tss)~

4m'+m)
g~.,+=cos-', 8, (F +F+),
g+, =sin-,'8, (F F+—). (311)

where the s-channel helicity amplitudes are denoted by
gq', q. It is easy to show that F+,. ~———7/IF+.,+~. Thus we
only need F+.+& and for simplicity of notation we write
F&=F+,+&/v2 in what follows. The two equations in

(Bg) (810) give"

We see by inspection that A++' and A+ ' are free of all
but dynamical singularities if A and 8 are. Hence the
kinematic singularity of the helicity amplitudes at the
normal threshold is automatically incorporated in the
forms (36) and (87). Similarly, we note that at the
normal threshold the coeflicient of A in A++' vanishes.
Both helicity amplitudes become proportional to 8,
with their ratio given by (85). Thus the threshold
relation is also satisled automatically.

4. Dynamical Exceptions

The singularities and relations at thresholds hold
in general merely because of kinematics. But dynamics
may give rise to exceptions. As an illustration, suppose
that in the t channel only the J=1 state occurs, or
more correctly, that a vector-meson (V) exchange is
evaluated in perturbation theory. The invariant ampli-
tudes in this case are

Either by considering L and L' values, as in Sec. III A
and- Sec. 1 of this Appendix, or directly from the general
results of (26) and (28), we obtain the kinematic-
singularity structure

Fs= (4sp, p, ')~&~+s&A~/gs, (312)

provided the mesons are assumed lighter than the
baryons. It should, be recalled that the gs singularity
in the denominator comes from the factor (sints8, ) ' in
(310) Lsee above Eq. (24)g. Hence the sum (F +F+)
will not contain it, while the difference (F F+) will. —
The end result is

g+,+=coss8, [A (s,t)+4sp-, p, 'A+(s, t)j/gs, 813
g+,. ——sin-,'8, PA (s,t) 4sP-,P,'A—+(s,t)j/gs,

where the functions A and A+ are related at ps=0
according to

g
- (m' m) (y—,~ tss) — (I—s)
Gp +Gr

my' —t m'+m

2g(Gv+Gr)
(39)

A-= —(m' —ps) (m"—p")A++0(gs) (314)
in order that g+,+ be well behaved at gs= 0.

0. s-Channel Threshold Relations

1n —t

where Gy and Gz are the Dirac and Pauli coupling
constants at the VFN vertex, g is the K~V coupling
constant, and my is the mass of the vector meson. For
arbitrary Gy and Gp the helicity amplitudes have the
standard kinematic singularity and relation at threshold.
But if Gs = —Gv the 8 amplitude is zero. Then f+., es

vanishes identically and, f++, se vanishes as TN' at
threshold. This is an exampIe of an exception to the
restrictions of (31) and (85). In general, if the ampli-
tudes are less singular than the requirements of kine-
matics imply, constraint equations such as (35) do not
apply. The threshold constraints hoM. for the most
singular parts of the amplitudes, i.e., for the non-
vanishing parts of the Aq, q, , q,q, (s,t) in (26). Another
example, where the helicity amplitudes themselves do
not vanish at threshold, is aGorded by vector-meson
exchange in rrN +sr'6 (see Sec. I-V C).

5. s-Channel Kinematic Singularities

The s-channel reaction xN —+EF can be treated
analogously. Equation (15) takes the form

1) 1 1
F+;+"=—I, g+;+ n. , g+;—i, (—310)

V2(cos-,'8, sin-', 8,

Inspection of (813)shows that in the limit 4sp, p, ' —+ 0
the amplitudes depend only on A . Consequently, at
the four normal and pseudothresholds,

g+;+/cos28N —g+; /sms8N. (815)

Another way of establishing these threshold relations
is by using (310) and, (312). Jones'r and Trueman4'
obtained these constraints for g N scattering and
utilized. them to determine linear combinations of
amplitudes having more rapidly converging asymptotic
behavior for gs +~. -

7. Invariant-Amplitude Description in the s-Channel

The expressions for F+ and F in terms of the in-
variant amplitudes A and 8 of (86) are obtained by
reduction of the Dirac spinors to Pauli form. The
results are

F+= [(E—m) (E'—m')g'I'

XI A —((gs)+-s, (m+m'))Bj,
F= [(E+m)—(E'+m-') 5'I'

X[A1((gs) —-', (m+m'))Bj,
"The amplitudes Il+ are seen to be related to the Pauli ampli-

tudes f& and fs by F = 8sWfr, F+= —8nWfr, where M-
8~yt'&x'I fr+f~ O'o t Ix—).
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where E and E' are the energies of the baryons in the
center-of-momentum frame. Using 4s(E&m) (E'&m')
=$((gs) &m)P —p'1L((gs) &m')' —p'j, we can verify
that F+ have the proper threshold behavior, (I!12),
provided A and 8 possess no kinematic singularities.
The vanishing of F+ at all four thresholds automatically
implies the threshold relation (315). Similarly, it can
be checked that (F +F+) is 6nite and regular at
gs=O, while (F F+)—goes as 1/gs. The A+ ampli-
tudes of (813) can be expressed in terms of A and 8:
A'= p(L((V's)+m)' —t 'X((v's)+m')' —t "3)""

m+m')
X ~A — (gs)~ ~a, (@17)

2 i

verifying the analytic behavior of A+ as functions of
Qs for Re(gs))O.

APPENDIX C

The threshold relations (39) for p.p.' ~gh at
t= (mo —m4)' do not exhaust the relations among the
amplitudes. There is a further connection among their
derivatives with respect to t at the pseudothreshold.
To establish this relation it is necessary to go beyond
the expansion (37) and keep the next-order terms in
T~'. The Russell-Saunders decomposition will now
contain contributions with 5'=1, L'= J and 5'=2,
I.'= J, in addition to higher terms with S'=2 and
l.'= J—2. It is necessary to know the corrections to
(A2) to order s '. For our present purposes we need the
result only for X=O:

(sin8)p(2J)!ss-p
dp. '(t) =

2'~!L(~+t )!(~—t )!j"-

where the superscript zero indicates evaluation at the
pseudothreshold.

A treatment similar to that of Sec. IV A in obtaining
(36) from (32) and (39) from (37), but using (A16) as
well as (A14) and (A15) and (Ci) instead of (A2),
leads to an expansion around TI'=0 of the form

p
fxo) 4; oo fxo& 4; oo 1+ +Tp

2s'

p
X X(s)— +p'F(s)

2(mo —m4)'

(s-,'l%o —X4~1p)
+Tp"( 1)'~' "4p— Z(s), (C4)

C(1+t )!(1—t )!]'Io

where the zeroth-order terms are given by (38) or
(C3).The various contributions to (C4) arise as follows:
(i) The (p/2s') comes from the second term in the
expansion (C1) and is of order Tp'. (ii) X(s) has
contributions from the expansion in t of the S'=2,
I.'=J—2 partial waves, as well as the leading contri-
bution for S'= 2, I.'=Jand derivatives of p-independent
factors connecting f and f. (iii) The Q/2(mp —mo)'j
term comes from differentiation of a factor (gt) " in

(gq) & of (C2). (iv) p'F(s) arises from the third term
in (C1) for the S'= 2, L' =J 2amplitud—es and part of
the S'=2, L'=J amplitudes )see (A16)]. (v) The last
term is the leading contribution of the S'= i, I'=J
partial waves.

Since the erst-order terms in (C4) involve three
unknown functions of s, there exists one relation among
the derivatives of the amplitudes at the pseudo-
threshold. It is easy to show from (C4) that this
relation is

p
X 1+

282

J(J—1)+p'
+ " (C1)

2(2J—1)s'
f&&;pp+f&;&;pp (1/&)(f&&—;op+fr;&;oo) '"

t (mo —m4)'—

From (39) it is evident that it is useful to de6ne arnpli-
tudes with the boundary function and some other
factors removed. Thus we introduce

gyes,.pp&p& (mo —mo)p-
1— . (CS)

3(mo —m4)'- (Tp's)'

The connections (39) now read

f„„«—T T o(g )
—

w(2(m m, )PP's)P—o The square bracket on the right-hand side can be
expressed in terms of masses and s For m~=yg~ ——pXJX3X4;00
this bracket becomes

fy );pp =302(mo+m4)'yo(s),

ft;);«"'= fry; pp"'

ma —m4
1—

(Tp's)P

4mom4L(mo —m4)' —4p'j
(C6)

(s—I)'

1
f~.~; oo"'=+ f~t;oo"', —

V3

1
ft, $;oo = ft p;o—o p

showing that in the limit of large s it approaches
(C3) unity.

The three unknown functions, X, F, Z, in (C4)
represent Tp'P contributions from (S'=2, L'= J—2),
(S'=2, L'=J), and (S'=1,L'=J). The one remaining
Russell-Saunders combination, (S'=2, L'= 7+2), only
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enters at T~'4. This is the reason for the existence of
the relation (C5). The second and higher derivatives
with respect to t will receive contributions from all four
Russell-Saunders combinations and so wi11 have no
relations among them. At the normal threshold the
zeroth order in T~' involves (S'=1,L'= J—1) and
(S'=2, L'= J 1), w—hile the 6rst order in T~' has
contributions from (S'=1,L'= J+1) and (S'=2, L'
=J+1) as well. Thus there are only the relationships
contained in (36), and none among the derivatives.

The derivative relation (C5) can be cast into various
forms by using amplitudes other than the f of (C2).
In particular, the derivation of threshold relations by
means of transversity amplitudes' leads to derivative
relations for the normal helicity amplitudes akin to
(CS), but with zero on the right-hand side and a
left-hand side differing by certain factors of i~ that
correspond to powers of (sin8t jcos8t) s at threshold.

be conveniently written in the form

(gt) sin8t) "+" —cos8t
&3&4;&1)t2

= (4pp' cos8,)
cos8t I 1—cos8t

X—K(t)Ay y y "(s,t), (D4)

where E(t) is the kinematic-singularity factor [the
square bracket in (26)] for ) =tt=0. A factor of (—1)"
has been inserted into (D4) for convenience since we
assume the masses to be such that cos8&= —1 on the
boundary of the s-channel physical region. The be-
havior in (gt) sin8t is appropriate for the dependence
(23) on gtt at this boundary. "The analytic amplitude
A & is assumed to be dominated by a single Regge pole.
From (17) and the analytic continuation in J of (A12)
we see that for large z, A & will be given by

APPENDIX D

In this Appendix we give a brief discussion of Regge-
pole amplitudes with emphasis on exhibiting the
helicity dependence in a reasonable, factorable way.
We consider a singLe Regge pole of definite signature

g, and parity factor p in the t channel; more elaborate
exchanges can be built up by linear superposition. From
(17) and (18) it is evident, in the limit of large s= cos8„
that only amplitudes with the same value of rt as the
Regge pole will survive. Thus the helicity amplitude
in the limit of large z is

f„,„,,„,„,(t,8,)= (K2 os-,'8)~"+"j(v2 sin —',8)~" "~

X s F)„~,x,)„(t,s) . (D1)

It is sufhcient to choose X=X~—X2, p=X3—X4 both
non-negative. Amplitudes for other values of ), p, can
be found from the Jacob-Wick parity relation

f ), t,;, ~, ),=(nan4t'pm-s)( 1)"+'4 " '~—' "
XfkIX4; X&Xs (D2)

~ XsX4; XEX2 (++2)P~I~4i $1/2 (t)

(2~) ) sa-m

X
2"L(~-t )!(~+t )!(~-))!(~+))!]"'

%+e '

(X
"'

i, (D5)
sins n

where n(f) is the trajectory of the pole and P(t) is the
residue function. P(t) must have appropriate singu-
larities in t so that A & is well behaved.

The speci6c dependence of P (t) on a, )t, and tt depends
on dynamical assumptions, such as whether the
trajectory chooses "sense" or "nonsense" at integer
values of n less than ) or p, . These are discussed in
footnotes 9 and 10 of Ref. 12. For a trajectory that
chooses "sense" the residue function has a factor
$(rr —J)(n+J+1)]'ts for each "sense-nonsense" value
of J, i.e., N~& J(rN, and a factor (n J)(n+J+—1) for
"nonsense-nonsense" values of J, i.e., J&n. Thus the
the residue is proportional to

8)i4; -Kj-X2
1—cos8g

= tf (—1)~—
sr) trts( —1)"+" j„... , , , (D3)

1+cos8t

where tts and I are the larger and smaller of (X,tt),
respectively. Equation (D3) follows from (15), to the
leading power of z. If lower powers of z are retained,

(D1) and (D3) are more complicated, but it is still
sufhcient to take ), p non-negative.

1. Singularity Structure and Residue Behavior

The kinematic-singularity structure can be exhibited
explicitly by means of (26). The amplitude (D1) can

n(n+1) (n —1)(n+2) (n —I+1)(n+I)
XL(tr—ts) (n+I+1) (tr —et+ 1)(rr+ttt)]tts

This can be written as

L(+))t(+.) ti( -))l( -&) t] t.
' The powers of gt used in obtaining (D4) sre not quite those

of (26). They are the powers necessary to compensate for the
behavior of f(e) at t=0. See the discussion below Eq. (23).
Another point worthy of note: (D4) is appropriate for all masses
unequal. For processes like ES~xp, with two masses equal,
the kinematic-singularity structure is different (see Ref. 10).
With E(t) de6ned by (26) in the limit m&=mm, the right-hand
side of Eq. (D4) must be multiplied by (gt)~, where E=—tt
+svswsD ( &)"3—-
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With /98~&0 and —cos88&~ 1 in the physical s channel,
it can be seen that X is positive and real there.
Furthermore, for large s, —cos8, increases rapidly away
from the exact forward direction. This means that
X „also rapidly approaches unity. The region of t over
which variation occurs is measured in units of the
minimum value of momentum transfer. Since the
minimum transfer falls off as s ' or s ' for large s, this
region of t where the mass differences are important is
very small. Accurate approximations can be given for
X „.We distinguish two cases: (a) equal masses in
either the initial or final state of the t channel, and (b)
unequal masses in both initial and anal t-channel
states. We define a dimensionless variable x such that

The complete residue function is therefore5~

Pxs)88; x8xs (t)

(1)"+» 1 )" (n-+/)!(n+))! '/'-(pp')-"

(M// 4sp// (u —ts)!(n—),)! 4 sp 8

'yis)s4; Xi)sp (t)
X (D6)(+!)t

Here M is a mass parameter inserted so that all the
reduced residues y(t) will have the same dimensions,
and stt is the usual scale parameter. When (D6) is
combined with (DS) and inserted into (D4) the
result is

(D10)x'= —t/( —t) .t) &+» 8r trr t

f)is)s4; )siXS= Xsssps ($8")
),)t x=1 for 8,=0', and x)1 away from the forward

direction.
&(K(t)gag„, x,)„(t)R(s,t), (D7)

where the factor X „(s,t) is discussed in the next
section and

1 1 tps —u /pt), +e '
R(.,t)= ——

I

gxn!& 2st) E 2sin~n 3

R(s,t) is the standard Regge amplitude for spinless
particles. In writing (D8) we have appealed to the work
of Freedman and Wang" and others in order to make
the replacement (4pp's)-+ (s—u), even for unequal
masses. Notice that in (D7) we have written g t-
in order to have real quantities in the physical region
of the s channel (assumed to have t(0). The reduced
residue y(t) is real and analytic in t; it may contain a
"ghost-killing" factor of 0, for even-signature trajectories.

2. The Very-Small-t Region

The factor X is equal to unity over most of the
physical range. It has t dependence only in a very
small interval near the forward direction in the s
channel. Explicitly, we have

itV'8) siop, ~
"+"

/
—coop, )"(g t) sss+88X

cos88 ] (1—cos88

4pp' cos88i"

(x
S—I i

+ ( —COS88

2PP' cos8, i i —coop, )
/4PP Cos88)

xl ). (»)
s—u j

'7 We are here ignoring the presence of 6xed poles in the partial-
@rave amplitudes at nonsense, wrong-signature points, discussed
by S. Mandelstam and L.L. Wang, Phys. Rev. 160, 1490 (1967)

(x 1)(sss+88)/2(x+ 1)(888-88)/2

X„„(x)= (D11)
Xm

For the reaction mN —+ ~A, for which

(—t).;„=0.1/P t.bs (GeV/c)

in units of (GeV/c)', the transition region in which
X „rises from zero (if ntNO) to unity is con6ned to
such small values of t that present experiments cannot
possibly explore it.

(b) Masses unequal in both t channel states-
(e.g. , rrp +Nit, 1VZ —8 NZ). —

Here (—t); oi: 1/s asymptotically, and —cos8,
2x' —i. Then we obtain

X~» (x)= (1—1/x') &"+")/'. (D12)

It is of interest to note that, independently of
whether or not some of the masses are equal, at some
6xed small value of —t, for example, t= —m ', X „
=1—0(1/s). This can be seen by expanding (D11)
and (D12) in powers of x ' and x ', respectively, and
noting the dependence of (—t) on s in each case.

and A. H. Mueller and T. L. Trueman, ibid. 160, 1296 (1967).
If the effects of the third double-spectral function are small, the
simple behavior presented here is expected to be approximately
valid."D. Z. Freedman and J.-M. Wang, Phys. Rev. Letters 17, 569
(1966); Phys. Rev. 1538 1596 (1967).' A rough approximation in the few-GeV/s region is (—t)miss= (888,'—888,')'/4Ptssbx if the S-Channel prOCeSS iS ab -+ S/ts and
tgft= f8'

(a) Equal masses in one t ohann-el state
(e.g. , sr7r &N/). , s-p——& NN).

For this case, (—t); oi:1/s' asymptotically, " and—cos88 x is valid for x values from zero to where X
is close to unity. The approximation to X „ is thus
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For all inelastic processes at very high energies, then,
the transition region in t becomes unimportant as s '
and all the relevant t dependence is contained in (D7)
with X „=1.The explicit helicity dependence in t is
given by the factor (g—t)"+& or its equivalent. s6

3. Trajectory Chooses "Nonsense"

The choice of factorials in the square root in (D6)
is such as to cause the residue to behave "sensibly, "
that is, to vanish when o, becomes equal to an un-
physical integer J value, J&nz. Another possibility is
to have the Regge trajectory choose "nonsense, " that
is, to have a residue which behaves the same for "sense-
nonsense" helicity values, but with the roles of "sense-
sense" and "nonsense-nonsense" helicities interchanged.
This means that the residue is proportional to

(u —te) (u+ m+1) (u —S+1)(n —S)
X[(n—n) (a+n+ 1)(u'—n —1)(a+m+2)

X (u —m+1) (a+m)]'12

where for integer J&S the trajectory chooses "non-
sense" (S)te). This can be written as

( n+ S)'I (u ~) (n I). —
cr

(n S)!k (n—+X)?(u+ p)!
(D13)

We note that the square root in (D13) is just the
reciprocal of that occurring in (D6), an acceptable
alternative for combination with (DS) to give an
analytic amplitude. The choosing of "nonsense" (some-

times called the Gell-Mann mechanism) has as its
consequence the replacement in (D7)

CX.Q. (n+S)! n! n!
—+ . (D14)

(u —~)!(u —~)! (u —S)!(n+~) ' (u+&)!

Depending on the values of S, ), and p and signature,
it may be necessary to multiply (D14) by additional
factors in order to prevent "ghost" poles at negative
integral values of o.. In practice, only the point o.=0 is
important. Slowly varying factors from (D14) can then
be incorporated into the reduced residue y(t) in (D7).
As a Gnal comment we note that when lower-order
powers of s are kept in (DS), compensating trajectories
are needed to prevent singularities in the amplitude at
"nonsense" values of J (0&~ J(e) (see Appendix B
of Ref. 26).

Note added ie proof. Between submission of this paper
and receipt of galley proofs, unpublished reports con-
cerned with various aspects of kinematic singularities
and threshold constraints and using a variety of tech-
niques have been received from J. P. Ader, M. Cap-
deville and H. Navelet, J. Franklin, D. Z. Freedman,
E. Gotsman and U. Maor, F. S. Henyey, A. Kotanski,
A. McKerrell, and H. P. Stapp. The work of Franklin
closely parallels our own in the use of L-S coupling
techniques. Mention should also be made of a somewhat
related work by M. Barmawi [Phys. Rev. 166, 1846
(1968)g who considers L Scoupling fo-r the partial-wave
series and then makes a %atson-Sommerfeld trans-
formation to obtain Regge poles with L-S coupling.


